Environmental Resources Management

One Beacon Street, 5th Floor Boston, MA 02108 +1 617 646 7800 +1 617 267 6447 (fax)

http://www.erm.com

23 May 2014 Reference: 0237233

Mr. Brian Monahan Conservation Commission Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

RE: Transmittal of Groundwater Analytical Data Former Raytheon Facility

430 Boston Post Road, Wayland, Massachusetts

Dear Mr. Monahan:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting the results of groundwater sample analyses related to the Former Raytheon Facility located at 430 Boston Post Road in Wayland, Massachusetts (Site). These results are submitted pursuant to 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

Innovative Engineering Solutions, Inc. (IESI) collected two groundwater samples from wells on the Town of Wayland Conservation Commission property on 5 April 2014. Samples were submitted to TestAmerica Laboratories, Inc. of Westfield, Massachusetts. Analytical results are attached to this letter. These analytical data from the groundwater monitoring wells will be provided to the Massachusetts Department of Environmental Protection in the next MCP submittal.

Raytheon has implemented the Public Involvement Process in accordance with 310 CMR 40.1405. Documents pertaining to the Site can be found at the Board of Health Public Involvement Plan files, or at http://raytheon.erm.com/home.htm.

If you have any questions or comments, please contact the undersigned at (617) 646-7800 or Jonathan Hone, Raytheon Company, at (978) 436-8298.

Sincerely,

John C. Drobinski, P.G., LSP *Principal-in-Charge*

Lyndsey Colburn, P.G. *Project Manager*

Lydey Collins

enclosures: BWSC-123 - Notice of Environmental Sampling

Laboratory Analytical Reports

cc: Jonathan Hone, Raytheon Company

Ben Gould, CMG Environmental

PIP Repositories

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

BWSC 123

This Notice is Related to Release Tracking Number

2	
O.	
_	

A. The address of the disposal site related to	this Notice	and Release Tracking Number (provided above):
Street Address: 430 Boston Post Road		
City/Town: Wayland	Zip Code:	01778
B. This notice is being provided to the follow	ing party:	
1. Name: Town of Wayland Conservation Com	mission	
Street Address: 41 Cochituate Road		
	Zip Code:	01778
C. This notice is being given to inform its rec	ipient (the p	party listed in Section B):
✓ 1. That environmental sampling will be/h	as been cond	ducted at property owned by the recipient of this notice.
✓ 2. Of the results of environmental sampli	ng conducted	d at property owned by the recipient of this notice.
3. Check to indicate if the analytical result the environmental sampling must be atta		hed. (If item 2. above is checked, the analytical results from notice.)
D. Location of the property where the environ		
Street Address: 0 Old Sudbury Road		
City/Town: Wayland	Zip Code:	01778
MCP phase of work during which the sampling	g will be/has	been conducted:
☐ Immediate Response Action ☐ Release Abatement Measure ☐ Utility-related Abatement Measure ☐ Phase I Initial Site Investigation ☐ Phase II Comprehensive Site Assessment	Phase Phase Phase Post-0	e III Feasibility Evaluation e IV Remedy Implementation Plan e V/Remedy Operation Status Class C Operation, Maintenance and Monitoring (specify)
3. Description of property where sampling will be	e/has been c	
residential commerical	industrial	school/playground Other undeveloped
4. Description of the sampling locations and type	es (e.g., soil,	(specify) groundwater) to the extent known at the time of this notice.
Collection of groundwater	sampl	es from existing monitoring wells.
E. Contact information related to the party pro Contact Name: Louis J. Burkhardt	oviding this	notice:
50 Apple Hill Drive		
Street Address: Tewksbury		01876
City/Town: 978-858-1885	Zip Code:	
Telephone:	Email: lou	is_j_burkhardt@raytheon.com

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation under the Massachusetts Contingency Plan at a property on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/dep/cleanup/oview.htm. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://mass.gov/dep/about/region/schedule.htm if you would like to make an appointment to see these files. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-57495-1 Client Project/Site: IDS Wayland

For:

Innovative Engineering Solutions, Inc 25 Spring Street Walpole, Massachusetts 02081

Attn: Vicki Pariyar

Authorized for release by: 4/15/2014 3:47:49 PM Rich Emerich, Analyst V rich.emerich@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

Samples DEP19M and DEP-21were collected from wells installed on the Town of Wayland Conservation other properties have been grayed out for ease of review.

Commission Property. All other samples collected from

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

-----LINKS

results through Total Access

Review your project

Have a Question?

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	7
Client Sample Results	13
Surrogate Summary	78
QC Sample Results	80
QC Association Summary	113
Lab Chronicle	115
Certification Summary	122
Method Summary	123
Sample Summary	124
Receipt Checklists	125
Chain of Custody	126

3

4

6

R

9

10

12

4 4

Definitions/Glossary

Client: Innovative Engineering Solutions, Inc

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
F1	MS and/or MSD Recovery exceeds the control limits
F2	MS/MSD RPD exceeds control limits
*	RPD of the LCS and LCSD exceeds the control limits

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Case Narrative

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Job ID: 480-57495-1

Laboratory: TestAmerica Buffalo

Narrative

Receipt

The samples were received on 4/9/2014 at 1:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.1° C and 2.3° C.

GC/MS VOA

Method 8260: With the exception of diluted samples, per question G on the MassDEP Analytical Protocol Certification Form, TestAmerica's routine reporting limits do not achieve the CAM reporting limits specified in this CAM protocol for 1,2-dibromo-3-chloropropane, Carbon Disulfide, Isopropyl Ether, Naphthalene, tert-Butyl Ethyl Ether, tert-Amyl Methyl Ether and Tetrahydrofuran.

Method 8260: Due to the dilutions required, per question G on the MassDEP Analytical Protocol Certification Form, the CAM reporting limits specified in this CAM protocol could not be achieved for some or all samples/analytes.

Method 8260B SIM: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: DupX3-20140408-01 (480-57495-36), MW-261S-20140408-01 (480-57495-3), MW-263M-20140408-01 (480-57495-7), MW-267M-20140405-01 (480-57495-12), MW-267S-20140405-01 (480-57495-11) and MW-552-20140407-01 (480-57495-18). Elevated reporting limits (RLs) are provided.

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batches 174684 and 175485 exceeded control limits for the following analyte: Tetrahydrofuran. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-261S-20140408-01 (480-57495-3). Elevated reporting limits (RLs) are provided.

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batches 175074, 175163 and 174949 exceeded control limits for the following analytes: 2-Hexanone. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%.

Method 8260C: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch175074 recovered outside control limits for the following analytes: 1,4-Dioxane.

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 175074 were outside control limits.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: (480-57495-17 MS), (480-57495-17 MSD), DupX2-20140406-01 (480-57495-35), MW-551-20140408-01 (480-57495-17), MW-560-20140407-01 (480-57495-20), MW-561-20140407-01 (480-57495-21), MW-562-20140407-01 (480-57495-22), REW-1-20140406-01 (480-57495-24), (480-57495-33 MS), (480-57495-33 MSD), MW-562-20140407-01 (480-57495-22), MW-563-20140407-01 (480-57495-23), REW-11-20140406-01 (480-57495-32), REW-12-20140406-01 (480-57495-33), REW-6-20140406-01 (480-57495-27), REW-7-20140406-01 (480-57495-28), MW-263M-20140408-01 (480-57495-7), MW-267S-20140405-01 (480-57495-11), MW-268M-20140407 (480-57495-14) and DupX3-20140408-01 (480-57495-36). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted due to the abundance of non-target analytes: MW-267M-20140405-01 (480-57495-12). Elevated reporting limits (RLs) are provided.

Method 8260C: The laboratory control sample (LCS) and the laboratory control sample duplicate (LCSD) for batch 174949 exceeded control limits for the following analyte: 2-Butanone. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample.

Method 8260C: The method blank for batch 175163 contained Carbon Disulfide above the method detection limit. This target analyte concentration was less than the reporting limit (RL) so re-analysis of the associated samples was not performed.

4

5

8

11

14

Case Narrative

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Job ID: 480-57495-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 175163 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260C: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for batch 175163 was outside control limits. Sample matrix interference was suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No other analytical or quality issues were noted.

3

4

5

7

10

13

14

	MassDEP Analytical Protocol Certification Form									
Labo	ratory Name:	TestAmer	ica Buffalo	Project #:	480-574	95				
Proje	ect Location:	IDS W	ayland	RTN:						
This	This form provides certifications for the data set for the following Laboratory Sample ID Number(s):									
	57495 [1- <u>36]</u>									
Matrio	ces:	Groundwater/Surfa		Soil/Sediment	Drinking Water	Other:				
0000	V/00		Mass DEP VPH	k all that apply be	7196 Hex Cr	IMA DED ADIA				
8260 CAM	_	7470/7471 Hg CAM III B	CAM IV A	8081 Pesticides CAM V B	CAM VI B	Mass DEP APH CAM IX A				
	SVOC	7010 Metals	Mass DEP EPH	8151 Herbicides	8330 Explosives	TO-15 VOC				
CAM	II B	CAM III C	CAM IV B	CAM V C	CAM VIII A	CAM IX B				
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 / 9014/ 4500CN Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B					
	Affirmative	Responses to Que	stions A through I	F are required for "	Presumptive Certainty" st	atus				
Α		served (including ter			d on the Chain-of-Custody, d prepared/analyzed within	Yes No				
В	Were the an protocol(s) for	•	nd all associated Q	C requirements spe	cified in the selected CAM	Yes No				
С				esponse actions spe ce standard non-cor	ecified in the selected CAM nformances?	Yes No				
D					pecified in CAM VII A, and Reporting of Analytical	Yes No				
Е	modification	(s)? (Refer to the inc	dividual method(s) f	ethod conducted with or a list of significan e analyte list reporte	t modifications).	Yes No				
F		•	-		onformances identified and stions A through E)?	Yes No				
	Respon	ses to Questions C	6, H and I below ar	e required for "Pre	sumptive Certainty" statu	S				
G	protocol(s)?			ing limits specified in		□ _{Yes} ■ No¹				
	Data User				not necessarily meet the dat 0. 1056 (2)(k) and WCS-07-350					
Н	Were all QC	performance stand	ards specified in the	e CAM protocol(s) a	chieved?	Yes No ¹				
ı	Were results	reported for the co	mplete analyte list s	pecified in the selec	cted CAM protocol(s) ?	Yes No ¹				
		ust be addressed in an attac	<u> </u>							
obtair	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.									
Signa	ture:	0::0		Position:	Technical Director, Test	America Westfield				
Printe	d Name:	Richard	Emerich	Date:	4/15/14 1	5:29				
This forr	n has been electroi	nically signed and approved.								

Client: Innovative Engineering Solutions, Inc

Client Sample ID: DEP-19M-20140405-01

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-1

No Detections.

Client Sample ID: DEP-21-20140405-01 Lab Sample ID: 480-57495-2

	Analyte	Result Qualifier	RL	MDL Ur	it Dil Fac	D	Method	Prep Type
	cis-1,2-Dichloroethene	3.8	1.0	ug	/L 1	_	8260C	Total/NA
l	Trichloroethene	1.0	1.0	ug	/L 1		8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

5

7

8

44

12

14

15

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

This Detection Summary does not include radiochemical test results.

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Client Sample ID: DEP-19M-20140405-01

Project/Site: IDS Wayland

Date Collected: 04/05/14 10:30

Date Received: 04/09/14 01:30

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-1

Matrix: Water

Method: 8260C	Volatile	Organic	Compounds	(GC/MS)
---------------	----------	---------	-----------	---------

Analyte	Result Qualifier	RL	MDL Unit	D Prepare		Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		04/09/14 17:26	
1,1,1-Trichloroethane	ND	1.0	ug/L		04/09/14 17:26	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		04/09/14 17:26	
1,1,2-Trichloroethane	ND	1.0	ug/L		04/09/14 17:26	
1,1-Dichloroethane	ND	1.0	ug/L		04/09/14 17:26	
1,1-Dichloroethene	ND	1.0	ug/L		04/09/14 17:26	
1,1-Dichloropropene	ND	1.0	ug/L		04/09/14 17:26	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
1,2,3-Trichloropropane	ND	1.0	ug/L		04/09/14 17:26	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		04/09/14 17:26	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		04/09/14 17:26	
1,2-Dichlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
1,2-Dichloroethane	ND	1.0	ug/L		04/09/14 17:26	
1,2-Dichloropropane	ND	1.0	ug/L		04/09/14 17:26	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		04/09/14 17:26	
1,3-Dichlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
1,3-Dichloropropane	ND	1.0	ug/L		04/09/14 17:26	
1,4-Dichlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
1,4-Dioxane	ND	50	ug/L		04/09/14 17:26	
2,2-Dichloropropane	ND	1.0	ug/L		04/09/14 17:26	
2-Butanone (MEK)	ND	10	ug/L		04/09/14 17:26	
2-Chlorotoluene	ND	1.0	ug/L		04/09/14 17:26	
2-Hexanone	ND	10	ug/L		04/09/14 17:26	
4-Chlorotoluene	ND	1.0	ug/L		04/09/14 17:26	
4-Isopropyltoluene	ND	1.0	ug/L		04/09/14 17:26	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		04/09/14 17:26	
Acetone	ND	50	ug/L		04/09/14 17:26	
Benzene	ND	1.0	ug/L		04/09/14 17:26	
Bromobenzene	ND	1.0	ug/L		04/09/14 17:26	
Bromoform	ND	1.0	ug/L		04/09/14 17:26	
Bromomethane	ND	2.0	ug/L		04/09/14 17:26	
Carbon disulfide	ND	10	ug/L		04/09/14 17:26	
Carbon tetrachloride	ND	1.0	ug/L		04/09/14 17:26	
Chlorobenzene	ND	1.0	ug/L		04/09/14 17:26	
Chlorobromomethane	ND	1.0	ug/L		04/09/14 17:26	
Chlorodibromomethane	ND	0.50	ug/L		04/09/14 17:26	
Chloroethane	ND	2.0	ug/L		04/09/14 17:26	
Chloroform	ND	1.0	_		04/09/14 17:26	
Chloromethane	ND	2.0	ug/L		04/09/14 17:26	
cis-1,2-Dichloroethene	ND		ug/L			
,	ND ND	1.0	ug/L		04/09/14 17:26	
cis-1,3-Dichloropropene		0.40	ug/L		04/09/14 17:26	
Dichlorobromomethane Dichlorodifluoromethane	ND ND	0.50	ug/L		04/09/14 17:26	
Dichlorodifluoromethane	ND	1.0	ug/L		04/09/14 17:26	
Ethyl ether	ND	1.0	ug/L		04/09/14 17:26	
Ethylbenzene	ND	1.0	ug/L		04/09/14 17:26	
Ethylene Dibromide	ND	1.0	ug/L		04/09/14 17:26	
Hexachlorobutadiene	ND ND	0.40	ug/L		04/09/14 17:26	

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-1

Matrix: Water

Client Sample ID: DEP-19M-20140405-01 Date Collected: 04/05/14 10:30

Date Received: 04/09/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0		ug/L			04/09/14 17:26	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/09/14 17:26	1
Methylene Chloride	ND		1.0		ug/L			04/09/14 17:26	1
m-Xylene & p-Xylene	ND		2.0		ug/L			04/09/14 17:26	1
Naphthalene	ND		5.0		ug/L			04/09/14 17:26	1
n-Butylbenzene	ND		1.0		ug/L			04/09/14 17:26	1
N-Propylbenzene	ND		1.0		ug/L			04/09/14 17:26	1
o-Xylene	ND		1.0		ug/L			04/09/14 17:26	1
sec-Butylbenzene	ND		1.0		ug/L			04/09/14 17:26	1
Styrene	ND		1.0		ug/L			04/09/14 17:26	1
Tert-amyl methyl ether	ND		5.0		ug/L			04/09/14 17:26	1
Tert-butyl ethyl ether	ND		5.0		ug/L			04/09/14 17:26	1
tert-Butylbenzene	ND		1.0		ug/L			04/09/14 17:26	1
Tetrachloroethene	ND		1.0		ug/L			04/09/14 17:26	1
Tetrahydrofuran	ND	*	10		ug/L			04/09/14 17:26	1
Toluene	ND		1.0		ug/L			04/09/14 17:26	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/09/14 17:26	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/09/14 17:26	1
Trichloroethene	ND		1.0		ug/L			04/09/14 17:26	1
Trichlorofluoromethane	ND		1.0		ug/L			04/09/14 17:26	1
Vinyl chloride	ND		1.0		ug/L			04/09/14 17:26	1
Dibromomethane	ND		1.0		ug/L			04/09/14 17:26	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130		04/09/14 17:26	1
1,2-Dichloroethane-d4 (Surr)	103		70 - 130		04/09/14 17:26	1
4-Bromofluorobenzene (Surr)	98		70 - 130		04/09/14 17:26	1

Client Sample ID: DEP-21-20140405-01

Date Collected: 04/05/14 11:25

Date Received: 04/09/14 01:30

_ab	Sam	ole	ID:	480	-574	495-2	2
_42	Ouiii			400	01	TOO 2	

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/09/14 17:50	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/09/14 17:50	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/09/14 17:50	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/09/14 17:50	1
1,1-Dichloroethane	ND		1.0		ug/L			04/09/14 17:50	1
1,1-Dichloroethene	ND		1.0		ug/L			04/09/14 17:50	1
1,1-Dichloropropene	ND		1.0		ug/L			04/09/14 17:50	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			04/09/14 17:50	1
1,2,3-Trichloropropane	ND		1.0		ug/L			04/09/14 17:50	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/09/14 17:50	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			04/09/14 17:50	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			04/09/14 17:50	1
1,2-Dichlorobenzene	ND		1.0		ug/L			04/09/14 17:50	1
1,2-Dichloroethane	ND		1.0		ug/L			04/09/14 17:50	1
1,2-Dichloropropane	ND		1.0		ug/L			04/09/14 17:50	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			04/09/14 17:50	1

TestAmerica Buffalo

Page 14 of 129

5

7

9

11

12

14

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-2

Matrix: Water

Client Sample ID: DEP-21-20140405-01

Date Collected: 04/05/14 11:25 Date Received: 04/09/14 01:30

Method: 8260C - Volatile Organi					_			5".
Analyte		Qualifier RL	MDL	Unit	D _	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND	1.0		ug/L			04/09/14 17:50	1
1,3-Dichloropropane	ND	1.0		ug/L			04/09/14 17:50	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/09/14 17:50	1
1,4-Dioxane	ND	50		ug/L			04/09/14 17:50	1
2,2-Dichloropropane	ND	1.0		ug/L			04/09/14 17:50	
2-Butanone (MEK)	ND	10		ug/L			04/09/14 17:50	1
2-Chlorotoluene	ND	1.0		ug/L			04/09/14 17:50	1
2-Hexanone	ND	10		ug/L			04/09/14 17:50	
4-Chlorotoluene	ND	1.0		ug/L			04/09/14 17:50	1
4-Isopropyltoluene	ND	1.0		ug/L			04/09/14 17:50	1
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			04/09/14 17:50	1
Acetone	ND	50		ug/L			04/09/14 17:50	1
Benzene	ND	1.0		ug/L			04/09/14 17:50	1
Bromobenzene	ND	1.0		ug/L			04/09/14 17:50	
Bromoform	ND	1.0		ug/L			04/09/14 17:50	1
Bromomethane	ND	2.0		ug/L			04/09/14 17:50	1
Carbon disulfide	ND	10		ug/L			04/09/14 17:50	1
Carbon tetrachloride	ND	1.0		ug/L			04/09/14 17:50	1
Chlorobenzene	ND	1.0		ug/L			04/09/14 17:50	1
Chlorobromomethane	ND	1.0		ug/L			04/09/14 17:50	1
Chlorodibromomethane	ND	0.50		ug/L			04/09/14 17:50	1
Chloroethane	ND	2.0		ug/L			04/09/14 17:50	1
Chloroform	ND	1.0		ug/L			04/09/14 17:50	1
Chloromethane	ND	2.0		ug/L			04/09/14 17:50	1
cis-1,2-Dichloroethene	3.8	1.0		ug/L			04/09/14 17:50	1
cis-1,3-Dichloropropene	ND	0.40		ug/L			04/09/14 17:50	1
Dichlorobromomethane	ND	0.50		ug/L			04/09/14 17:50	1
Dichlorodifluoromethane	ND	1.0		ug/L			04/09/14 17:50	1
Ethyl ether	ND	1.0		ug/L			04/09/14 17:50	1
Ethylbenzene	ND	1.0		ug/L			04/09/14 17:50	1
Ethylene Dibromide	ND	1.0		ug/L			04/09/14 17:50	1
Hexachlorobutadiene	ND	0.40		ug/L			04/09/14 17:50	1
Isopropyl ether	ND	10		ug/L			04/09/14 17:50	1
Isopropylbenzene	ND	1.0		ug/L			04/09/14 17:50	1
Methyl tert-butyl ether	ND	1.0		ug/L			04/09/14 17:50	1
Methylene Chloride	ND	1.0		ug/L			04/09/14 17:50	1
m-Xylene & p-Xylene	ND	2.0		ug/L			04/09/14 17:50	1
Naphthalene	ND	5.0		ug/L			04/09/14 17:50	1
n-Butylbenzene	ND	1.0		ug/L			04/09/14 17:50	
N-Propylbenzene	ND	1.0		ug/L			04/09/14 17:50	1
o-Xylene	ND	1.0		ug/L			04/09/14 17:50	1
sec-Butylbenzene	ND	1.0		ug/L			04/09/14 17:50	
Styrene	ND	1.0		ug/L			04/09/14 17:50	1
Tert-amyl methyl ether	ND	5.0		ug/L			04/09/14 17:50	. 1
Tert-butyl ethyl ether	ND	5.0		ug/L			04/09/14 17:50	
tert-Butylbenzene	ND	1.0		ug/L			04/09/14 17:50	1
or Datymorizono				ug/L				1
Tetrachloroethene	NID.							
Tetrachloroethene Tetrahydrofuran	ND ND	1.0		ug/L			04/09/14 17:50 04/09/14 17:50	

TestAmerica Buffalo

2

5

7

9

10

12

14

I

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-2

Matrix: Water

Client Sample ID: DEP-21-20140405-01

Date Collected: 04/05/14 11:25 Date Received: 04/09/14 01:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/09/14 17:50	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/09/14 17:50	1
Trichloroethene	1.0		1.0		ug/L			04/09/14 17:50	1
Trichlorofluoromethane	ND		1.0		ug/L			04/09/14 17:50	1
Vinyl chloride	ND		1.0		ug/L			04/09/14 17:50	1
Dibromomethane	ND		1.0		ug/L			04/09/14 17:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		04/09/14 17:50	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 130					04/09/14 17:50	1
4-Bromofluorobenzene (Surr)	100		70 - 130					04/09/14 17:50	1

-

9

10

12

11

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

3

4

6

7

8

40

11

13

14

L

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Buffalo

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Buffalo

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland

TestA

4

6

7

8

9

10

12

14

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

4

6

9

10

12

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

6

8

10

11

12

14

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland

TestAmeric

Δ

5

6

0

9

10

12

1 *1*

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

3

4

5

6

9

10

12

4 1

46

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland

4

5

6

8

9

10

12

14

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

3

4

J

6

8

9

11

14

14

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

5

6

8

46

11

14

14

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland
TestAmerica Job ID: 480-57495-1

2

4

C

Ω

9

4 4

12

14

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc
Project/Site: IDS Wayland
TestAmerica Job ID: 480-57495-1

Λ

6

10

11

13

14

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BA-d9 (Sur	DBFM	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
480-57495-3	MW-261S-20140408-01	144	85	
480-57495-7	MW-263M-20140408-01	136	86	
480-57495-9	MW-266Ma-20140405-01	120	92	
480-57495-11	MW-267S-20140405-01	137	85	
480-57495-12	MW-267M-20140405-01	118	86	
480-57495-13	MW-268S-20140407	112	90	
480-57495-14	MW-268M-20140407	80	83	
480-57495-16	MW-269Ma-20140405	111	92	
480-57495-18	MW-552-20140407-01	117	88	
480-57495-36	DupX3-20140408-01	134	86	
LCS 480-175364/4	Lab Control Sample	97	84	
LCSD 480-175364/5	Lab Control Sample Dup	104	84	
MB 480-175364/6	Method Blank	122	91	

TBA-d9 (Surr) = TBA-d9 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surrog	gate Recovery (Accepta
		TOL	12DCE	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
480-57495-1	DEP-19M-20140405-01	98	103	98	
480-57495-2	DEP-21-20140405-01	101	102	100	
480-57495-3	MW-261S-20140408-01	101	101	97	
480-57495-4	MW-263M-20140408-01	101	103	98	
180-57495-5	MW-264M-20140408-01	98	103	96	
480-57495-6	MW-265S-20140408-01	99	102	97	
180-57495-7	MW-263M-20140408-01	100	97	99	
180-57495-7 - DL	MW-263M-20140408-01	96	94	102	
180-57495-8	MW-265D-20140408-01	95	97	98	
80-57495-9	MW-266Ma-20140405-01	99	102	97	
180-57495-10	MW-266Mb-20140405-01	98	103	95	
80-57495-11	MW-267S-20140405-01	98	93	99	
80-57495-12	MW-267M-20140405-01	95	94	98	
180-57495-13	MW-268S-20140407	99	94	101	
180-57495-14	MW-268M-20140407	98	94	99	
180-57495-15	MW-268D-20140405	95	95	97	
180-57495-16	MW-269Ma-20140405	96	96	99	
480-57495-17	MW-551-20140408-01	96	96	100	
180-57495-17 MS	MW-551-20140408-01	99	103	102	
480-57495-17 MSD	MW-551-20140408-01	99	99	105	
480-57495-18	MW-552-20140407-01	96	94	100	
180-57495-19	MW-553-20140407-01	98	95	104	
480-57495-20	MW-560-20140407-01	99	94	101	
480-57495-20 - DL	MW-560-20140407-01	98	94	102	
480-57495-21	MW-561-20140407-01	96	95	98	

TestAmerica Buffalo

Page 78 of 129

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Prep Type: Total/NA

				Percent Su
		TOL	12DCE	BFB
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)
480-57495-22	MW-562-20140407-01	99	94	104
480-57495-22 - DL	MW-562-20140407-01	98	97	102
480-57495-23	MW-563-20140407-01	97	94	100
480-57495-24	REW-1-20140406-01	96	97	99
480-57495-25	REW-4-20140406-01	94	92	97
480-57495-26	REW-5-20140406-01	96	95	100
480-57495-27	REW-6-20140406-01	98	95	99
480-57495-28	REW-7-20140406-01	99	94	99
480-57495-29	REW-8-20140406-01	97	97	102
480-57495-30	REW-9-20140406-01	98	93	100
480-57495-31	REW-10-20140406-01	97	98	98
480-57495-32	REW-11-20140406-01	98	98	100
480-57495-33	REW-12-20140406-01	96	97	97
480-57495-33 MS	REW-12-20140406-01	100	103	101
480-57495-33 MSD	REW-12-20140406-01	97	95	102
480-57495-34	DupX1-20140405-01	98	95	99
480-57495-35	DupX2-20140406-01	101	93	100
480-57495-35 - DL	DupX2-20140406-01	97	95	99
480-57495-36	DupX3-20140408-01	96	95	104
480-57495-36 - DL	DupX3-20140408-01	99	106	96
480-57495-37	Trip Blanks	97	95	101
LCS 480-174684/6	Lab Control Sample	100	102	102
LCS 480-174949/5	Lab Control Sample	100	105	104
LCS 480-175074/5	Lab Control Sample	99	106	103
LCS 480-175163/5	Lab Control Sample	101	103	103
LCS 480-175485/6	Lab Control Sample	98	105	99
LCSD 480-174684/7	Lab Control Sample Dup	101	101	103
LCSD 480-174949/6	Lab Control Sample Dup	97	103	101
LCSD 480-174949/6	Lab Control Sample Dup	99	103	101
LCSD 480-175163/6	Lab Control Sample Dup	100	103	104
LCSD 480-175485/7	Lab Control Sample Dup	96	106	96
MB 480-174684/9	Method Blank	100	101	96
MB 480-174949/8	Method Blank	95	94	99
	Method Blank	95 97	9 4 95	99
MB 480-175074/8				
MB 480-175163/8	Method Blank	97	92	101
MB 480-175485/9	Method Blank	99	105	96

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo

_

5

7

10

12

4 4

4 E

04/11/14 23:06

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: Innovative Engineering Solutions, Inc Project/Site: IDS Wayland

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

91

Lab Sample ID: MB 480-175364/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 175364

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		1.6		ug/L			04/11/14 23:06	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
TBA-d9 (Surr)			50 - 150			_		04/11/14 23:06	1

Lab Sample ID: LCS 480-175364/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

50 - 150

Analysis Batch: 175364

Dibromofluoromethane (Surr)

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 16.0 16.0 50 - 150 ug/L 100

LCS LCS %Recovery Qualifier Surrogate Limits TBA-d9 (Surr) 50 - 150 97 Dibromofluoromethane (Surr) 84 50 - 150

Lab Sample ID: LCSD 480-175364/5

Matrix: Water

Analysis Batch: 175364

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane	16.0	17.0		ug/L		106	50 - 150	6	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
TBA-d9 (Surr)	104	-	50 - 150
Dibromofluoromethane (Surr)	84		50 - 150

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-174684/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 174684

Analysis Baton: 174004	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/09/14 12:40	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/09/14 12:40	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/09/14 12:40	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/09/14 12:40	1
1,1-Dichloroethane	ND		1.0		ug/L			04/09/14 12:40	1
1,1-Dichloroethene	ND		1.0		ug/L			04/09/14 12:40	1
1,1-Dichloropropene	ND		1.0		ug/L			04/09/14 12:40	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			04/09/14 12:40	1
1,2,3-Trichloropropane	ND		1.0		ug/L			04/09/14 12:40	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/09/14 12:40	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			04/09/14 12:40	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			04/09/14 12:40	1

TestAmerica Buffalo

Page 80 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174684/9

Matrix: Water

Analysis Batch: 174684

ilent Sample ID: Method Bi	ank	
Prep Type: Total	/NA	

Analyte	Result Quali	fier RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND ND	1.0	ug/L		04/09/14 12:40	
1,2-Dichloroethane	ND	1.0	ug/L		04/09/14 12:40	
1,2-Dichloropropane	ND	1.0	ug/L		04/09/14 12:40	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		04/09/14 12:40	
1,3-Dichlorobenzene	ND	1.0	ug/L		04/09/14 12:40	
1,3-Dichloropropane	ND	1.0	ug/L		04/09/14 12:40	
1,4-Dichlorobenzene	ND	1.0	ug/L		04/09/14 12:40	
1,4-Dioxane	ND	50	ug/L		04/09/14 12:40	
2,2-Dichloropropane	ND	1.0	ug/L		04/09/14 12:40	
2-Butanone (MEK)	ND	10	ug/L		04/09/14 12:40	
2-Chlorotoluene	ND	1.0	ug/L		04/09/14 12:40	
2-Hexanone	ND	10	ug/L		04/09/14 12:40	
4-Chlorotoluene	ND	1.0	ug/L		04/09/14 12:40	
4-Isopropyltoluene	ND	1.0	ug/L		04/09/14 12:40	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		04/09/14 12:40	
Acetone	ND	50	ug/L		04/09/14 12:40	
Benzene	ND	1.0	ug/L		04/09/14 12:40	
Bromobenzene	ND	1.0	ug/L		04/09/14 12:40	
Bromoform	ND	1.0	ug/L		04/09/14 12:40	
Bromomethane	ND	2.0	ug/L		04/09/14 12:40	
Carbon disulfide	ND	10	ug/L		04/09/14 12:40	
Carbon tetrachloride	ND	1.0	ug/L		04/09/14 12:40	
Chlorobenzene	ND	1.0	ug/L		04/09/14 12:40	
Chlorobromomethane	ND	1.0	ug/L		04/09/14 12:40	
Chlorodibromomethane	ND	0.50	ug/L		04/09/14 12:40	
Chloroethane	ND	2.0	ug/L		04/09/14 12:40	
Chloroform	ND	1.0	ug/L		04/09/14 12:40	
Chloromethane	ND	2.0	ug/L		04/09/14 12:40	
cis-1,2-Dichloroethene	ND	1.0	ug/L		04/09/14 12:40	
cis-1,3-Dichloropropene	ND	0.40	ug/L		04/09/14 12:40	
Dichlorobromomethane	ND	0.50	ug/L		04/09/14 12:40	
Dichlorodifluoromethane	ND	1.0	ug/L		04/09/14 12:40	
Ethyl ether	ND	1.0	ug/L		04/09/14 12:40	
Ethylbenzene	ND	1.0	ug/L		04/09/14 12:40	
Ethylene Dibromide	ND	1.0	ug/L		04/09/14 12:40	
Hexachlorobutadiene	ND	0.40	ug/L		04/09/14 12:40	
Isopropyl ether	ND	10	ug/L		04/09/14 12:40	
Isopropylbenzene	ND	1.0	ug/L		04/09/14 12:40	
Methyl tert-butyl ether	ND	1.0	ug/L		04/09/14 12:40	
Methylene Chloride	ND	1.0	ug/L		04/09/14 12:40	
m-Xylene & p-Xylene	ND	2.0	ug/L		04/09/14 12:40	
Naphthalene	ND	5.0	ug/L		04/09/14 12:40	
n-Butylbenzene	ND	1.0	ug/L		04/09/14 12:40	
N-Propylbenzene	ND	1.0	ug/L		04/09/14 12:40	
o-Xylene	ND	1.0	ug/L		04/09/14 12:40	
sec-Butylbenzene	ND	1.0	ug/L		04/09/14 12:40	
Styrene	ND	1.0	ug/L		04/09/14 12:40	
Tert-amyl methyl ether	ND	5.0	ug/L		04/09/14 12:40	

TestAmerica Buffalo

Page 81 of 129

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174684/9

Matrix: Water

Analysis Batch: 174684

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tert-butyl ethyl ether	ND		5.0		ug/L			04/09/14 12:40	1
tert-Butylbenzene	ND		1.0		ug/L			04/09/14 12:40	1
Tetrachloroethene	ND		1.0		ug/L			04/09/14 12:40	1
Tetrahydrofuran	ND		10		ug/L			04/09/14 12:40	1
Toluene	ND		1.0		ug/L			04/09/14 12:40	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/09/14 12:40	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/09/14 12:40	1
Trichloroethene	ND		1.0		ug/L			04/09/14 12:40	1
Trichlorofluoromethane	ND		1.0		ug/L			04/09/14 12:40	1
Vinyl chloride	ND		1.0		ug/L			04/09/14 12:40	1
Dibromomethane	ND		1.0		ug/L			04/09/14 12:40	1

MB MB

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	70 - 130		04/09/14 12:40	1
1,2-Dichloroethane-d4 (Surr)	101	70 - 130		04/09/14 12:40	1
4-Bromofluorobenzene (Surr)	96	70 - 130		04/09/14 12:40	1

Lab Sample ID: LCS 480-174684/6

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 174684							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	26.9		ug/L		108	70 - 130
1,1,1-Trichloroethane	25.0	26.3		ug/L		105	70 - 130
1,1,2,2-Tetrachloroethane	25.0	26.5		ug/L		106	70 - 130
1,1,2-Trichloroethane	25.0	26.3		ug/L		105	70 - 130
1,1-Dichloroethane	25.0	25.8		ug/L		103	70 - 130
1,1-Dichloroethene	25.0	26.3		ug/L		105	70 - 130
1,1-Dichloropropene	25.0	26.5		ug/L		106	70 - 130
1,2,3-Trichlorobenzene	25.0	27.0		ug/L		108	70 - 130
1,2,3-Trichloropropane	25.0	25.7		ug/L		103	70 - 130
1,2,4-Trichlorobenzene	25.0	27.1		ug/L		108	70 - 130
1,2,4-Trimethylbenzene	25.0	26.1		ug/L		104	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	26.6		ug/L		106	70 - 130
1,2-Dichlorobenzene	25.0	26.5		ug/L		106	70 - 130
1,2-Dichloroethane	25.0	26.3		ug/L		105	70 - 130
1,2-Dichloropropane	25.0	26.6		ug/L		106	70 _ 130
1,3,5-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 130
1,3-Dichlorobenzene	25.0	26.3		ug/L		105	70 - 130
1,3-Dichloropropane	25.0	25.8		ug/L		103	70 - 130
1,4-Dichlorobenzene	25.0	25.7		ug/L		103	70 - 130
1,4-Dioxane	500	510		ug/L		102	70 - 130
2,2-Dichloropropane	25.0	25.2		ug/L		101	70 - 130
2-Butanone (MEK)	125	138		ug/L		111	70 - 130
2-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130
2-Hexanone	125	133		ug/L		107	70 - 130
4-Chlorotoluene	25.0	23.9		ug/L		96	70 - 130
4-Isopropyltoluene	25.0	26.7		ug/L		107	70 - 130

TestAmerica Buffalo

Page 82 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-174684/6

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 174684

	Spike	LCS LCS	LCS	_CS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		103	70 - 130
Acetone	125	129		ug/L		103	70 _ 130
Benzene	25.0	26.3		ug/L		105	70 - 130
Bromobenzene	25.0	25.8		ug/L		103	70 - 130
Bromoform	25.0	24.0		ug/L		96	70 _ 130
Bromomethane	25.0	26.8		ug/L		107	70 - 130
Carbon disulfide	25.0	25.7		ug/L		103	70 ₋ 130
Carbon tetrachloride	25.0	27.0		ug/L		108	70 _ 130
Chlorobenzene	25.0	26.0		ug/L		104	70 - 130
Chlorobromomethane	25.0	26.1		ug/L		104	70 - 130
Chlorodibromomethane	24.5	26.2		ug/L		107	70 - 130
Chloroethane	25.0	26.3		ug/L		105	70 ₋ 130
Chloroform	25.0	25.9		ug/L		104	70 - 130
Chloromethane	25.0	25.1		ug/L		100	70 - 130
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	70 - 130
cis-1,3-Dichloropropene	25.0	26.6		ug/L		106	70 - 130
Dichlorobromomethane	25.0	26.5		ug/L		106	70 _ 130
Dichlorodifluoromethane	25.0	27.1		ug/L		108	70 - 130
Ethyl ether	25.0	26.6		ug/L		106	70 - 130
Ethylbenzene	25.0	25.9		ug/L		104	70 _ 130
Ethylene Dibromide	25.0	26.1		ug/L		105	70 - 130
Hexachlorobutadiene	25.0	28.6		ug/L		114	70 - 130
Isopropyl ether	25.0	26.0		ug/L		104	70 - 130
Isopropylbenzene	25.0	26.2		ug/L		105	70 - 130
Methyl tert-butyl ether	25.0	25.6		ug/L		102	70 - 130
Methylene Chloride	25.0	25.7		ug/L		103	70 - 130
m-Xylene & p-Xylene	25.0	26.1		ug/L		104	70 - 130
Naphthalene	25.0	27.5		ug/L		110	70 - 130
n-Butylbenzene	25.0	27.1		ug/L		108	70 - 130
N-Propylbenzene	25.0	25.5		ug/L		102	70 - 130
o-Xylene	25.0	25.8		ug/L		103	70 - 130
sec-Butylbenzene	25.0	26.5		ug/L		106	70 - 130
Styrene	25.0	26.3		ug/L		105	70 - 130
Tert-amyl methyl ether	25.0	25.9		ug/L		104	70 - 130
Tert-butyl ethyl ether	25.0	25.4		ug/L		101	70 - 130
tert-Butylbenzene	25.0	25.6		ug/L		103	70 - 130
Tetrachloroethene	25.0	29.5		ug/L		118	70 - 130
Tetrahydrofuran	50.0	67.3	*	ug/L		135	70 - 130
Toluene	25.0	25.5		ug/L		102	70 - 130
trans-1,2-Dichloroethene	25.0	25.9		ug/L		103	70 - 130
trans-1,3-Dichloropropene	25.0	25.9		ug/L		104	70 - 130
Trichloroethene	25.0	26.1		ug/L		105	70 - 130
Trichlorofluoromethane	25.0	27.3		ug/L		109	70 - 130
Vinyl chloride	25.0	24.7		ug/L		99	70 - 130
Dibromomethane	25.0	26.4		ug/L		105	70 ₋ 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		70 - 130

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-174684/6

Matrix: Water

Analysis Batch: 174684

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 480-174684/7

Matrix: Water

Analysis Batch: 174684

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	26.5		ug/L		106	70 - 130	2	20
1,1,1-Trichloroethane	25.0	25.2		ug/L		101	70 - 130	4	20
1,1,2,2-Tetrachloroethane	25.0	26.0		ug/L		104	70 - 130	2	20
1,1,2-Trichloroethane	25.0	26.0		ug/L		104	70 - 130	1	20
1,1-Dichloroethane	25.0	25.4		ug/L		102	70 - 130	2	20
1,1-Dichloroethene	25.0	27.2		ug/L		109	70 - 130	3	20
1,1-Dichloropropene	25.0	25.6		ug/L		103	70 - 130	3	20
1,2,3-Trichlorobenzene	25.0	26.7		ug/L		107	70 - 130	1	20
1,2,3-Trichloropropane	25.0	26.6		ug/L		106	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	26.8		ug/L		107	70 - 130	1	20
1,2,4-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	25.1		ug/L		101	70 - 130	5	20
1,2-Dichlorobenzene	25.0	26.2		ug/L		105	70 - 130	1	20
1,2-Dichloroethane	25.0	26.0		ug/L		104	70 - 130	1	20
1,2-Dichloropropane	25.0	25.8		ug/L		103	70 - 130	3	20
1,3,5-Trimethylbenzene	25.0	25.3		ug/L		101	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.8		ug/L		103	70 - 130	2	20
1,3-Dichloropropane	25.0	26.0		ug/L		104	70 - 130	1	20
1,4-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	1	20
1,4-Dioxane	500	514		ug/L		103	70 - 130	1	20
2,2-Dichloropropane	25.0	24.0		ug/L		96	70 - 130	5	20
2-Butanone (MEK)	125	141		ug/L		113	70 - 130	2	20
2-Chlorotoluene	25.0	25.5		ug/L		102	70 - 130	3	20
2-Hexanone	125	131		ug/L		105	70 - 130	1	20
4-Chlorotoluene	25.0	23.5		ug/L		94	70 - 130	2	20
4-Isopropyltoluene	25.0	26.0		ug/L		104	70 - 130	2	20
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		104	70 - 130	0	20
Acetone	125	125		ug/L		100	70 - 130	3	20
Benzene	25.0	25.5		ug/L		102	70 - 130	3	20
Bromobenzene	25.0	25.5		ug/L		102	70 - 130	1	20
Bromoform	25.0	23.8		ug/L		95	70 - 130	1	20
Bromomethane	25.0	26.0		ug/L		104	70 - 130	3	20
Carbon disulfide	25.0	24.8		ug/L		99	70 - 130	4	20
Carbon tetrachloride	25.0	26.0		ug/L		104	70 - 130	4	20
Chlorobenzene	25.0	25.8		ug/L		103	70 - 130	1	20
Chlorobromomethane	25.0	25.6		ug/L		102	70 - 130	2	20
Chlorodibromomethane	24.5	25.9		ug/L		106	70 - 130	1	20
Chloroethane	25.0	25.2		ug/L		101	70 - 130	4	20
Chloroform	25.0	25.4		ug/L		101	70 - 130	2	20
Chloromethane	25.0	24.6		ug/L		98	70 - 130	2	20

TestAmerica Buffalo

Page 84 of 129

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-174684/7

Client: Innovative Engineering Solutions, Inc

Matrix: Water

Analysis Batch: 174684

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 25.0 97 70 - 130 cis-1,2-Dichloroethene 24.3 ug/L 4 20 cis-1,3-Dichloropropene 25.0 26.3 ug/L 105 70 - 130 20 25.0 25.7 Dichlorobromomethane ug/L 103 70 - 130 3 20 Dichlorodifluoromethane 25.0 25.5 ug/L 102 70 - 130 20 25.0 25.9 104 70 - 130 20 Ethyl ether ug/L 3 25.0 26.0 104 70 - 130 20 Ethylbenzene ug/L Ethylene Dibromide 25.0 26.3 105 70 - 130 20 ug/L Hexachlorobutadiene 25.0 27.3 ug/L 109 70 - 130 20 70 - 130 Isopropyl ether 25.0 25.2 ug/L 101 3 20 Isopropylbenzene 25.0 25.3 ug/L 101 70 - 130 3 20 Methyl tert-butyl ether 25.0 25.1 ug/L 101 70 - 130 2 20 25.0 20 Methylene Chloride 24.6 ug/L 98 70 - 130 m-Xylene & p-Xylene 25.0 25.8 ug/L 103 70 - 130 20 27.2 Naphthalene 25.0 ug/L 109 70 - 130 20 n-Butylbenzene 25.0 26.4 106 70 - 130 20 ug/L N-Propylbenzene 25.0 25.6 ug/L 102 70 - 130 20 0 25.0 25.5 102 70 - 130 20 o-Xylene ug/L 25.0 sec-Butylbenzene 25 4 ug/L 102 70 - 130 20 25.0 26.3 105 70 - 130 20 Styrene ug/L 25.4 ug/L 102 25.0 70 - 130 20 Tert-amyl methyl ether Tert-butyl ethyl ether 25.0 25.2 ug/L 101 70 - 130 20 25.0 26.1 104 70 - 130 tert-Butylbenzene ug/L 2 20 Tetrachloroethene 25.0 29.9 ug/L 120 70 - 130 2 20 ug/L Tetrahydrofuran 50.0 64.6 129 70 - 130 20 Toluene 25.0 25.6 ug/L 102 70 - 130 20

25.0

25.0

25.0

25.0

25.0

25.0

24.9

25.8

25.4

25.7

24.1

26.2

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

99

103

101

103

96

105

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

LCSD LCSD

Surrogate	%Recovery Qualifi	er Limits
Toluene-d8 (Surr)	101	70 - 130
1,2-Dichloroethane-d4 (Surr)	101	70 - 130
4-Bromofluorobenzene (Surr)	103	70 - 130

Lab Sample ID: MB 480-174949/8

Matrix: Water

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Vinyl chloride

Dibromomethane

Analysis Batch: 174949

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/10/14 13:25	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/10/14 13:25	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/10/14 13:25	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/10/14 13:25	1
1,1-Dichloroethane	ND		1.0		ug/L			04/10/14 13:25	1
1,1-Dichloroethene	ND		1.0		ug/L			04/10/14 13:25	1

TestAmerica Buffalo

Page 85 of 129

20

20

20

20

20

20

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-174949/8

Matrix: Water

Analysis Batch: 174949

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	ND		1.0	ug/L		Тторатса	04/10/14 13:25	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/10/14 13:25	
1,2,3-Trichloropropane	ND		1.0	ug/L			04/10/14 13:25	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/10/14 13:25	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/10/14 13:25	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L			04/10/14 13:25	1
1,2-Dichlorobenzene	ND		1.0	ug/L			04/10/14 13:25	1
1,2-Dichloroethane	ND		1.0	ug/L			04/10/14 13:25	1
1,2-Dichloropropane	ND		1.0	ug/L			04/10/14 13:25	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/10/14 13:25	
1,3-Dichlorobenzene	ND		1.0	ug/L			04/10/14 13:25	1
1,3-Dichloropropane	ND		1.0	ug/L			04/10/14 13:25	1
1,4-Dichlorobenzene	ND		1.0	ug/L			04/10/14 13:25	1
1,4-Dioxane	ND		50	ug/L			04/10/14 13:25	1
2,2-Dichloropropane	ND		1.0	ug/L			04/10/14 13:25	1
2-Butanone (MEK)	ND		10	ug/L			04/10/14 13:25	
2-Chlorotoluene	ND		1.0	ug/L			04/10/14 13:25	1
2-Hexanone	ND		10	ug/L			04/10/14 13:25	1
4-Chlorotoluene	ND		1.0	ug/L			04/10/14 13:25	
4-Isopropyltoluene	ND		1.0	ug/L			04/10/14 13:25	1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L			04/10/14 13:25	1
Acetone	ND		50	ug/L			04/10/14 13:25	
Benzene	ND		1.0	ug/L			04/10/14 13:25	1
Bromobenzene	ND		1.0	ug/L			04/10/14 13:25	1
Bromoform	ND		1.0	ug/L			04/10/14 13:25	
Bromomethane	ND		2.0	ug/L			04/10/14 13:25	1
Carbon disulfide	ND		10	ug/L			04/10/14 13:25	1
Carbon tetrachloride	ND		1.0	ug/L			04/10/14 13:25	
Chlorobenzene	ND		1.0	ug/L			04/10/14 13:25	1
Chlorobromomethane	ND		1.0	ug/L			04/10/14 13:25	1
Chlorodibromomethane	ND		0.50	ug/L			04/10/14 13:25	
Chloroethane	ND		2.0	ug/L			04/10/14 13:25	1
Chloroform	ND		1.0	ug/L			04/10/14 13:25	1
Chloromethane	ND ND		2.0	ug/L			04/10/14 13:25	
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/10/14 13:25	1
cis-1,3-Dichloropropene	ND		0.40	ug/L			04/10/14 13:25	1
Dichlorobromomethane	ND		0.50	ug/L			04/10/14 13:25	
Dichlorodifluoromethane	ND		1.0	ug/L			04/10/14 13:25	1
	ND		1.0				04/10/14 13:25	1
Ethyl ether Ethylbenzene	ND ND		1.0	ug/L			04/10/14 13:25	
Ethylene Dibromide	ND		1.0	ug/L			04/10/14 13:25	1
•			0.40	ug/L			04/10/14 13:25	
Hexachlorobutadiene	ND ND			ug/L				1
Isopropyl ether	ND ND		10 1.0	ug/L			04/10/14 13:25 04/10/14 13:25	1
Isopropylbenzene Methyl tort butyl other	ND ND		1.0	ug/L				1
Methyl tert-butyl ether			1.0	ug/L			04/10/14 13:25	1
Methylene Chloride	ND ND		1.0	ug/L			04/10/14 13:25 04/10/14 13:25	1
m-Xylene & p-Xylene Naphthalene	ND ND		2.0 5.0	ug/L ug/L			04/10/14 13:25	1

TestAmerica Buffalo

4/15/2014

Page 86 of 129

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-174949/8 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 174949

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		1.0		ug/L			04/10/14 13:25	1
N-Propylbenzene	ND		1.0		ug/L			04/10/14 13:25	1
o-Xylene	ND		1.0		ug/L			04/10/14 13:25	1
sec-Butylbenzene	ND		1.0		ug/L			04/10/14 13:25	1
Styrene	ND		1.0		ug/L			04/10/14 13:25	1
Tert-amyl methyl ether	ND		5.0		ug/L			04/10/14 13:25	1
Tert-butyl ethyl ether	ND		5.0		ug/L			04/10/14 13:25	1
tert-Butylbenzene	ND		1.0		ug/L			04/10/14 13:25	1
Tetrachloroethene	ND		1.0		ug/L			04/10/14 13:25	1
Tetrahydrofuran	ND		10		ug/L			04/10/14 13:25	1
Toluene	ND		1.0		ug/L			04/10/14 13:25	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/10/14 13:25	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/10/14 13:25	1
Trichloroethene	ND		1.0		ug/L			04/10/14 13:25	1
Trichlorofluoromethane	ND		1.0		ug/L			04/10/14 13:25	1
Vinyl chloride	ND		1.0		ug/L			04/10/14 13:25	1
Dibromomethane	ND		1.0		ug/L			04/10/14 13:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130		04/10/14 13:25	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 130		04/10/14 13:25	1
4-Bromofluorobenzene (Surr)	99		70 - 130		04/10/14 13:25	1

Lab Sample ID: LCS 480-174949/5

Matrix: Water

Analysis Batch: 174949								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	26.5		ug/L		106	70 - 130	
1,1,1-Trichloroethane	25.0	24.0		ug/L		96	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	25.3		ug/L		101	70 - 130	
1,1,2-Trichloroethane	25.0	25.1		ug/L		100	70 - 130	
1,1-Dichloroethane	25.0	25.0		ug/L		100	70 - 130	
1,1-Dichloroethene	25.0	24.0		ug/L		96	70 - 130	
1,1-Dichloropropene	25.0	24.9		ug/L		99	70 - 130	
1,2,3-Trichlorobenzene	25.0	25.8		ug/L		103	70 - 130	
1,2,3-Trichloropropane	25.0	25.5		ug/L		102	70 - 130	
1,2,4-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130	
1,2,4-Trimethylbenzene	25.0	27.0		ug/L		108	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	26.7		ug/L		107	70 - 130	
1,2-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130	
1,2-Dichloroethane	25.0	22.9		ug/L		92	70 - 130	
1,2-Dichloropropane	25.0	25.0		ug/L		100	70 - 130	
1,3,5-Trimethylbenzene	25.0	26.6		ug/L		107	70 - 130	
1,3-Dichlorobenzene	25.0	25.6		ug/L		103	70 - 130	
1,3-Dichloropropane	25.0	25.3		ug/L		101	70 - 130	
1,4-Dichlorobenzene	25.0	25.9		ug/L		104	70 - 130	
1,4-Dioxane	500	440		ug/L		88	70 - 130	

TestAmerica Buffalo

Page 87 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-174949/5

Matrix: Water

Analysis Batch: 174949

Client Sample ID:	Lab	Control	Sample
	Prep	Type:	Γotal/NA

Analysis Batch: 174949	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
2,2-Dichloropropane	25.0	25.6		ug/L	102	70 - 130
2-Butanone (MEK)	125	167	*	ug/L	134	70 - 130
2-Chlorotoluene	25.0	26.5		ug/L	106	70 - 130
2-Hexanone	125	190	*	ug/L	152	70 - 130
4-Chlorotoluene	25.0	28.0		ug/L	112	70 - 130
4-Isopropyltoluene	25.0	27.1		ug/L	108	70 - 130
4-Methyl-2-pentanone (MIBK)	125	130		ug/L	104	70 - 130
Acetone	125	108		ug/L	87	70 - 130
Benzene	25.0	24.6		ug/L	98	70 - 130
Bromobenzene	25.0	25.4		ug/L	101	70 - 130
Bromoform	25.0	24.6		ug/L	99	70 - 130
Bromomethane	25.0	21.4		ug/L	86	70 - 130
Carbon disulfide	25.0	25.5		ug/L	102	70 - 130
Carbon tetrachloride	25.0	25.2		ug/L	101	70 - 130
Chlorobenzene	25.0	25.6		ug/L	102	70 - 130
Chlorobromomethane	25.0	25.5		ug/L	102	70 - 130
Chlorodibromomethane	24.5	26.7		ug/L	109	70 - 130
Chloroethane	25.0	22.5		ug/L	90	70 - 130
Chloroform	25.0	23.8		ug/L	95	70 - 130
Chloromethane	25.0	22.4		ug/L	90	70 - 130
cis-1,2-Dichloroethene	25.0	25.3		ug/L	101	70 - 130
cis-1,3-Dichloropropene	25.0	25.6		ug/L	102	70 - 130
Dichlorobromomethane	25.0	24.9		ug/L	100	70 - 130
Dichlorodifluoromethane	25.0	23.0		ug/L	92	70 - 130
Ethyl ether	25.0	24.9		ug/L	100	70 - 130
Ethylbenzene	25.0	25.6		ug/L	102	70 - 130
Ethylene Dibromide	25.0	25.4		ug/L	101	70 - 130
Hexachlorobutadiene	25.0	28.5		ug/L	114	70 - 130
Isopropyl ether	25.0	23.0		ug/L	92	70 - 130
Isopropylbenzene	25.0	25.8		ug/L	103	70 - 130
Methyl tert-butyl ether	25.0	24.2		ug/L	97	70 - 130
Methylene Chloride	25.0	24.2		ug/L	97	70 - 130
m-Xylene & p-Xylene	25.0	26.2		ug/L	105	70 - 130
Naphthalene	25.0	24.8		ug/L	99	70 - 130
n-Butylbenzene	25.0	26.1		ug/L	105	70 - 130
N-Propylbenzene	25.0	25.5		ug/L	102	70 - 130
o-Xylene	25.0	26.3		ug/L	105	70 - 130
sec-Butylbenzene	25.0	25.9		ug/L	104	70 - 130
Styrene	25.0	26.1		ug/L	104	70 - 130
Tert-amyl methyl ether	25.0	23.0		ug/L	92	70 - 130
Tert-butyl ethyl ether	25.0	22.4		ug/L	90	70 - 130
tert-Butylbenzene	25.0	26.5		ug/L	106	70 - 130
Tetrachloroethene	25.0	26.3		ug/L	105	70 - 130
Tetrahydrofuran	50.0	49.8		ug/L	100	70 - 130
Toluene	25.0	26.1		ug/L	104	70 - 130
trans-1,2-Dichloroethene	25.0	24.9		ug/L	100	70 - 130
trans-1,3-Dichloropropene	25.0	26.4		ug/L	106	70 - 130
Trichloroethene	25.0	25.2		ug/L	101	70 - 130

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-174949/5

Matrix: Water

Analysis Batch: 174949

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	
Trichlorofluoromethane	25.0	21.3	ug/	/L	85	70 - 130	
Vinyl chloride	25.0	21.9	ug/	'L	88	70 - 130	
Dibromomethane	25.0	23.5	ug/	'L	94	70 - 130	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 100 70 - 130 105 70 - 130 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 104 70 - 130

Lab Sample ID: LCSD 480-174949/6

Matrix: Water

Analysis Batch: 174949

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	26.1	-	ug/L		105	70 - 130	1	20
1,1,1-Trichloroethane	25.0	23.1		ug/L		93	70 - 130	4	20
1,1,2,2-Tetrachloroethane	25.0	25.1		ug/L		101	70 - 130	1	20
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	70 - 130	1	20
1,1-Dichloroethane	25.0	24.2		ug/L		97	70 - 130	3	20
1,1-Dichloroethene	25.0	22.9		ug/L		92	70 - 130	5	20
1,1-Dichloropropene	25.0	23.6		ug/L		94	70 - 130	5	20
1,2,3-Trichlorobenzene	25.0	26.3		ug/L		105	70 - 130	2	20
1,2,3-Trichloropropane	25.0	25.4		ug/L		101	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130	3	20
1,2,4-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	26.3		ug/L		105	70 - 130	1	20
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	70 - 130	0	20
1,2-Dichloroethane	25.0	22.6		ug/L		90	70 - 130	1	20
1,2-Dichloropropane	25.0	24.3		ug/L		97	70 - 130	3	20
1,3,5-Trimethylbenzene	25.0	26.1		ug/L		105	70 - 130	2	20
1,3-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130	0	20
1,3-Dichloropropane	25.0	24.7		ug/L		99	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.7		ug/L		103	70 - 130	1	20
1,4-Dioxane	500	495		ug/L		99	70 - 130	12	20
2,2-Dichloropropane	25.0	24.8		ug/L		99	70 - 130	3	20
2-Butanone (MEK)	125	161		ug/L		129	70 - 130	4	20
2-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130	1	20
2-Hexanone	125	186	*	ug/L		149	70 - 130	2	20
4-Chlorotoluene	25.0	27.6		ug/L		110	70 - 130	2	20
4-Isopropyltoluene	25.0	26.6		ug/L		106	70 - 130	2	20
4-Methyl-2-pentanone (MIBK)	125	127		ug/L		102	70 - 130	2	20
Acetone	125	106		ug/L		85	70 - 130	3	20
Benzene	25.0	23.6		ug/L		94	70 - 130	4	20
Bromobenzene	25.0	25.4		ug/L		102	70 - 130	0	20
Bromoform	25.0	24.3		ug/L		97	70 - 130	2	20
Bromomethane	25.0	20.3		ug/L		81	70 - 130	5	20
Carbon disulfide	25.0	23.6		ug/L		94	70 - 130	8	20
Carbon tetrachloride	25.0	24.2		ug/L		97	70 - 130	4	20

TestAmerica Buffalo

Page 89 of 129

4/15/2014

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client Comple ID: Lob Contro

Lab Sample ID: LCSD 480-174949/6

Matrix: Water

Analysis Batch: 174949

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130	3	20	
Chlorobromomethane	25.0	24.6		ug/L		99	70 - 130	4	20	
Chlorodibromomethane	24.5	26.3		ug/L		107	70 - 130	2	20	
Chloroethane	25.0	21.4		ug/L		86	70 - 130	5	20	
Chloroform	25.0	23.2		ug/L		93	70 - 130	2	20	
Chloromethane	25.0	21.0		ug/L		84	70 - 130	6	20	
cis-1,2-Dichloroethene	25.0	24.3		ug/L		97	70 - 130	4	20	
cis-1,3-Dichloropropene	25.0	25.0		ug/L		100	70 - 130	2	20	
Dichlorobromomethane	25.0	24.5		ug/L		98	70 - 130	2	20	
Dichlorodifluoromethane	25.0	21.8		ug/L		87	70 - 130	5	20	
Ethyl ether	25.0	24.2		ug/L		97	70 - 130	3	20	
Ethylbenzene	25.0	24.7		ug/L		99	70 - 130	3	20	
Ethylene Dibromide	25.0	24.8		ug/L		99	70 - 130	2	20	
Hexachlorobutadiene	25.0	28.5		ug/L		114	70 - 130	0	20	
Isopropyl ether	25.0	22.5		ug/L		90	70 - 130	2	20	
Isopropylbenzene	25.0	25.6		ug/L		102	70 - 130	1	20	
Methyl tert-butyl ether	25.0	23.7		ug/L		95	70 - 130	2	20	
Methylene Chloride	25.0	23.5		ug/L		94	70 - 130	3	20	
m-Xylene & p-Xylene	25.0	25.6		ug/L		102	70 - 130	2	20	
Naphthalene	25.0	25.9		ug/L		103	70 - 130	4	20	
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 130	2	20	
N-Propylbenzene	25.0	25.2		ug/L		101	70 - 130	1	20	
o-Xylene	25.0	25.7		ug/L		103	70 - 130	3	20	
sec-Butylbenzene	25.0	25.6		ug/L		102	70 - 130	1	20	
Styrene	25.0	25.6		ug/L		103	70 - 130	2	20	
Tert-amyl methyl ether	25.0	22.8		ug/L		91	70 - 130	1	20	
Tert-butyl ethyl ether	25.0	22.1		ug/L		88	70 - 130	2	20	
tert-Butylbenzene	25.0	26.2		ug/L		105	70 - 130	1	20	
Tetrachloroethene	25.0	26.1		ug/L		104	70 - 130	1	20	
Tetrahydrofuran	50.0	48.5		ug/L		97	70 - 130	3	20	
Toluene	25.0	24.9		ug/L		100	70 - 130	5	20	
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	70 - 130	4	20	
trans-1,3-Dichloropropene	25.0	26.4		ug/L		105	70 - 130	0	20	
Trichloroethene	25.0	24.8		ug/L		99	70 - 130	2	20	
Trichlorofluoromethane	25.0	20.0		ug/L		80	70 - 130	6	20	
Vinyl chloride	25.0	20.5		ug/L		82	70 - 130	6	20	
Dibromomethane	25.0	22.9		ug/L		91	70 - 130	3	20	

LCSD LCSD

Surrogate	%Recovery Qualifie	r Limits
Toluene-d8 (Surr)	97	70 - 130
1,2-Dichloroethane-d4 (Surr)	103	70 - 130
4-Bromofluorobenzene (Surr)	101	70 - 130

TestAmerica Buffalo

4

6

8

10

40

13

14

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-175074/8 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 175074

Analyte	Regult	Qualifier RI	MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND Result	Quaimer Ri		ug/L		riepaieu	04/11/14 01:02	יווע
1,1,1-Trichloroethane	ND ND	1.0		-			04/11/14 01:02	
1.1.2.2-Tetrachloroethane	ND ND	0.50		ug/L			04/11/14 01:02	
1,1,2-Trichloroethane	ND	1.0		ug/L			04/11/14 01:02	
	ND ND			ug/L			04/11/14 01:02	
1,1-Dichloroethane	ND ND	1.0 1.0		ug/L			04/11/14 01:02	
1,1-Dichloroethene	ND			ug/L			04/11/14 01:02	
1,1-Dichloropropene		1.0		ug/L				
1,2,3-Trichlorobenzene	ND	1.0		ug/L			04/11/14 01:02 04/11/14 01:02	
1,2,3-Trichloropropane	ND	1.0		ug/L				
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/11/14 01:02	
1,2,4-Trimethylbenzene	ND	1.0		ug/L			04/11/14 01:02	
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			04/11/14 01:02	
1,2-Dichlorobenzene	ND	1.0		ug/L			04/11/14 01:02	
1,2-Dichloroethane	ND	1.0		ug/L			04/11/14 01:02	
1,2-Dichloropropane	ND	1.0		ug/L			04/11/14 01:02	
1,3,5-Trimethylbenzene	ND	1.0		ug/L			04/11/14 01:02	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/11/14 01:02	
1,3-Dichloropropane	ND	1.0		ug/L			04/11/14 01:02	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/11/14 01:02	
1,4-Dioxane	ND	50		ug/L			04/11/14 01:02	
2,2-Dichloropropane	ND	1.0) 	ug/L			04/11/14 01:02	
2-Butanone (MEK)	ND	10)	ug/L			04/11/14 01:02	
2-Chlorotoluene	ND	1.0)	ug/L			04/11/14 01:02	
2-Hexanone	ND	10)	ug/L			04/11/14 01:02	
4-Chlorotoluene	ND	1.0		ug/L			04/11/14 01:02	
1-Isopropyltoluene	ND	1.0)	ug/L			04/11/14 01:02	
1-Methyl-2-pentanone (MIBK)	ND	10)	ug/L			04/11/14 01:02	
Acetone	ND	50)	ug/L			04/11/14 01:02	
Benzene	ND	1.0)	ug/L			04/11/14 01:02	
Bromobenzene	ND	1.0)	ug/L			04/11/14 01:02	
Bromoform	ND	1.0)	ug/L			04/11/14 01:02	
Bromomethane	ND	2.0)	ug/L			04/11/14 01:02	
Carbon disulfide	ND	10)	ug/L			04/11/14 01:02	
Carbon tetrachloride	ND	1.0)	ug/L			04/11/14 01:02	
Chlorobenzene	ND	1.0)	ug/L			04/11/14 01:02	
Chlorobromomethane	ND	1.0)	ug/L			04/11/14 01:02	
Chlorodibromomethane	ND	0.50)	ug/L			04/11/14 01:02	
Chloroethane	ND	2.0)	ug/L			04/11/14 01:02	
Chloroform	ND	1.0)	ug/L			04/11/14 01:02	
Chloromethane	ND	2.0)	ug/L			04/11/14 01:02	
cis-1,2-Dichloroethene	ND	1.0)	ug/L			04/11/14 01:02	
cis-1,3-Dichloropropene	ND	0.40)	ug/L			04/11/14 01:02	
Dichlorobromomethane	ND	0.50)	ug/L			04/11/14 01:02	
Dichlorodifluoromethane	ND	1.0)	ug/L			04/11/14 01:02	
Ethyl ether	ND	1.0)	ug/L			04/11/14 01:02	
Ethylbenzene	ND	1.0)	ug/L			04/11/14 01:02	
Ethylene Dibromide	ND	1.0		ug/L			04/11/14 01:02	
Hexachlorobutadiene	ND	0.40		ug/L			04/11/14 01:02	

TestAmerica Buffalo

Page 91 of 129

Project/Site: IDS Wayland

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-175074/8 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 175074

	IIID	III D							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl ether	ND		10		ug/L			04/11/14 01:02	1
Isopropylbenzene	ND		1.0		ug/L			04/11/14 01:02	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/11/14 01:02	1
Methylene Chloride	ND		1.0		ug/L			04/11/14 01:02	1
m-Xylene & p-Xylene	ND		2.0		ug/L			04/11/14 01:02	1
Naphthalene	ND		5.0		ug/L			04/11/14 01:02	1
n-Butylbenzene	ND		1.0		ug/L			04/11/14 01:02	1
N-Propylbenzene	ND		1.0		ug/L			04/11/14 01:02	1
o-Xylene	ND		1.0		ug/L			04/11/14 01:02	1
sec-Butylbenzene	ND		1.0		ug/L			04/11/14 01:02	1
Styrene	ND		1.0		ug/L			04/11/14 01:02	1
Tert-amyl methyl ether	ND		5.0		ug/L			04/11/14 01:02	1
Tert-butyl ethyl ether	ND		5.0		ug/L			04/11/14 01:02	1
tert-Butylbenzene	ND		1.0		ug/L			04/11/14 01:02	1
Tetrachloroethene	ND		1.0		ug/L			04/11/14 01:02	1
Tetrahydrofuran	ND		10		ug/L			04/11/14 01:02	1
Toluene	ND		1.0		ug/L			04/11/14 01:02	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/11/14 01:02	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			04/11/14 01:02	1
Trichloroethene	ND		1.0		ug/L			04/11/14 01:02	1
Trichlorofluoromethane	ND		1.0		ug/L			04/11/14 01:02	1
Vinyl chloride	ND		1.0		ug/L			04/11/14 01:02	1
Dibromomethane	ND		1.0		ug/L			04/11/14 01:02	1

	MB MB				
Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	70 - 130		04/11/14 01:02	1
1,2-Dichloroethane-d4 (Surr)	95	70 - 130		04/11/14 01:02	1
4-Bromofluorobenzene (Surr)	99	70 - 130		04/11/14 01:02	1

Lab Sample ID: LCS 480-175074/5 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	25.5		ug/L		102	70 - 130
1,1,1-Trichloroethane	25.0	22.7		ug/L		91	70 - 130
1,1,2,2-Tetrachloroethane	25.0	23.8		ug/L		95	70 - 130
1,1,2-Trichloroethane	25.0	23.8		ug/L		95	70 - 130
1,1-Dichloroethane	25.0	23.8		ug/L		95	70 - 130
1,1-Dichloroethene	25.0	22.8		ug/L		91	70 - 130
1,1-Dichloropropene	25.0	23.6		ug/L		94	70 - 130
1,2,3-Trichlorobenzene	25.0	24.4		ug/L		98	70 - 130
1,2,3-Trichloropropane	25.0	23.6		ug/L		94	70 - 130
1,2,4-Trichlorobenzene	25.0	24.2		ug/L		97	70 - 130
1,2,4-Trimethylbenzene	25.0	25.7		ug/L		103	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	24.5		ug/L		98	70 - 130
1,2-Dichlorobenzene	25.0	24.4		ug/L		97	70 - 130
1,2-Dichloroethane	25.0	21.9		ug/L		88	70 - 130

TestAmerica Buffalo

Page 92 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-175074/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloropropane	25.0	24.1		ug/L		97	70 - 130
1,3,5-Trimethylbenzene	25.0	25.4		ug/L		102	70 - 130
1,3-Dichlorobenzene	25.0	24.6		ug/L		98	70 - 130
1,3-Dichloropropane	25.0	23.8		ug/L		95	70 - 130
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	70 - 130
1,4-Dioxane	500	360		ug/L		72	70 - 130
2,2-Dichloropropane	25.0	23.8		ug/L		95	70 - 130
2-Butanone (MEK)	125	127		ug/L		102	70 - 130
2-Chlorotoluene	25.0	25.3		ug/L		101	70 - 130
2-Hexanone	125	177	*	ug/L		142	70 - 130
4-Chlorotoluene	25.0	26.4		ug/L		106	70 - 130
4-Isopropyltoluene	25.0	25.7		ug/L		103	70 - 130
4-Methyl-2-pentanone (MIBK)	125	120		ug/L		96	70 - 130
Acetone	125	99.6		ug/L		80	70 - 130
Benzene	25.0	23.6		ug/L		94	70 - 130
Bromobenzene	25.0	24.4		ug/L		98	70 - 130
Bromoform	25.0	23.2		ug/L		93	70 - 130
Bromomethane	25.0	20.9		ug/L		84	70 ₋ 130
Carbon disulfide	25.0	24.1		ug/L		96	70 - 130
Carbon tetrachloride	25.0	24.1		ug/L		97	70 - 130
Chlorobenzene	25.0	24.3		ug/L		97	70 - 130
Chlorobromomethane	25.0	24.3		ug/L		97	70 - 130
Chlorodibromomethane	24.5	25.1		ug/L		103	70 - 130
Chloroethane	25.0	22.4		ug/L		89	70 - 130
Chloroform	25.0	22.9		ug/L		92	70 - 130
Chloromethane	25.0	21.8		ug/L		87	70 - 130
cis-1,2-Dichloroethene	25.0	24.1		ug/L		96	70 - 130
cis-1,3-Dichloropropene	25.0	24.1		ug/L		96	70 - 130
Dichlorobromomethane	25.0	23.7		ug/L		95	70 - 130
Dichlorodifluoromethane	25.0	22.6		ug/L		90	70 - 130
Ethyl ether	25.0	23.9		ug/L		96	70 - 130
Ethylbenzene	25.0	24.1		ug/L		96	70 - 130
Ethylene Dibromide	25.0	24.1		ug/L		97	70 - 130
Hexachlorobutadiene	25.0	27.1		ug/L		108	70 - 130 70 - 130
Isopropyl ether	25.0	23.0		ug/L		92	70 - 130
		24.7					70 - 130 70 - 130
Isopropylbenzene	25.0			ug/L		99	
Methyl tert-butyl ether	25.0	23.0		ug/L		92	70 - 130
Methylene Chloride	25.0	23.4		ug/L		94	70 ₋ 130
m-Xylene & p-Xylene	25.0	25.1		ug/L		100	70 ₋ 130
Naphthalene	25.0	23.5		ug/L		94	70 - 130
n-Butylbenzene	25.0	25.2		ug/L		101	70 - 130
N-Propylbenzene	25.0	24.3		ug/L		97	70 - 130
o-Xylene	25.0	24.7		ug/L		99	70 - 130
sec-Butylbenzene	25.0	24.8		ug/L		99	70 - 130
Styrene	25.0	24.7		ug/L		99	70 - 130
Tert-amyl methyl ether	25.0	22.8		ug/L		91	70 - 130
Tert-butyl ethyl ether	25.0	22.2		ug/L		89	70 - 130
tert-Butylbenzene	25.0	25.7		ug/L		103	70 - 130

TestAmerica Buffalo

Page 93 of 129

4

6

8

10

12

13

4 -

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-175074/5

Matrix: Water

Analysis Batch: 175074

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	25.0	26.5		ug/L		106	70 - 130	
Tetrahydrofuran	50.0	47.2		ug/L		94	70 - 130	
Toluene	25.0	24.5		ug/L		98	70 - 130	
trans-1,2-Dichloroethene	25.0	23.7		ug/L		95	70 - 130	
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	70 - 130	
Trichloroethene	25.0	24.7		ug/L		99	70 - 130	
Trichlorofluoromethane	25.0	20.9		ug/L		84	70 - 130	
Vinyl chloride	25.0	21.3		ug/L		85	70 - 130	
Dibromomethane	25.0	22.8		ug/L		91	70 - 130	
	00.100							

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 480-175074/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 175074									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	25.4		ug/L		102	70 - 130	0	20
1,1,1-Trichloroethane	25.0	22.5		ug/L		90	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	23.8		ug/L		95	70 - 130	0	20
1,1,2-Trichloroethane	25.0	24.1		ug/L		96	70 - 130	1	20
1,1-Dichloroethane	25.0	23.5		ug/L		94	70 - 130	2	20
1,1-Dichloroethene	25.0	22.4		ug/L		90	70 - 130	2	20
1,1-Dichloropropene	25.0	23.3		ug/L		93	70 - 130	1	20
1,2,3-Trichlorobenzene	25.0	24.9		ug/L		100	70 - 130	2	20
1,2,3-Trichloropropane	25.0	24.1		ug/L		96	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	24.5		ug/L		98	70 - 130	1	20
1,2,4-Trimethylbenzene	25.0	25.1		ug/L		100	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	25.0	25.4		ug/L		102	70 - 130	4	20
1,2-Dichlorobenzene	25.0	24.0		ug/L		96	70 - 130	1	20
1,2-Dichloroethane	25.0	21.9		ug/L		88	70 - 130	0	20
1,2-Dichloropropane	25.0	23.7		ug/L		95	70 - 130	2	20
1,3,5-Trimethylbenzene	25.0	24.7		ug/L		99	70 - 130	3	20
1,3-Dichlorobenzene	25.0	24.0		ug/L		96	70 - 130	2	20
1,3-Dichloropropane	25.0	23.6		ug/L		94	70 - 130	1	20
1,4-Dichlorobenzene	25.0	24.2		ug/L		97	70 - 130	1	20
1,4-Dioxane	500	462	*	ug/L		92	70 - 130	25	20
2,2-Dichloropropane	25.0	23.1		ug/L		92	70 - 130	3	20
2-Butanone (MEK)	125	154		ug/L		123	70 - 130	19	20
2-Chlorotoluene	25.0	24.9		ug/L		99	70 - 130	2	20
2-Hexanone	125	181	*	ug/L		145	70 - 130	2	20
4-Chlorotoluene	25.0	25.4		ug/L		102	70 - 130	4	20
4-Isopropyltoluene	25.0	25.0		ug/L		100	70 - 130	3	20
4-Methyl-2-pentanone (MIBK)	125	123		ug/L		98	70 - 130	2	20
Acetone	125	103		ug/L		82	70 - 130	3	20

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-175074/6

Matrix: Water

Analysis Batch: 175074

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD L	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	25.0	22.9		ug/L		92	70 - 130	3	20
Bromobenzene	25.0	24.1		ug/L		97	70 - 130	1	20
Bromoform	25.0	23.4		ug/L		94	70 - 130	1	20
Bromomethane	25.0	20.3		ug/L		81	70 - 130	3	20
Carbon disulfide	25.0	23.1		ug/L		92	70 - 130	4	20
Carbon tetrachloride	25.0	23.7		ug/L		95	70 - 130	2	20
Chlorobenzene	25.0	23.9		ug/L		96	70 - 130	1	20
Chlorobromomethane	25.0	24.2		ug/L		97	70 - 130	1	20
Chlorodibromomethane	24.5	24.9		ug/L		102	70 - 130	1	20
Chloroethane	25.0	21.6		ug/L		86	70 - 130	4	20
Chloroform	25.0	22.5		ug/L		90	70 - 130	2	20
Chloromethane	25.0	21.3		ug/L		85	70 - 130	2	20
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	70 - 130	2	20
cis-1,3-Dichloropropene	25.0	24.0		ug/L		96	70 - 130	0	20
Dichlorobromomethane	25.0	23.5		ug/L		94	70 - 130	1	20
Dichlorodifluoromethane	25.0	22.1		ug/L		88	70 - 130	2	20
Ethyl ether	25.0	23.5		ug/L		94	70 - 130	2	20
Ethylbenzene	25.0	23.6		ug/L		94	70 - 130	2	20
Ethylene Dibromide	25.0	23.7		ug/L		95	70 - 130	2	20
Hexachlorobutadiene	25.0	26.5		ug/L		106	70 - 130	2	20
Isopropyl ether	25.0	22.7		ug/L		91	70 - 130	2	20
Isopropylbenzene	25.0	24.0		ug/L		96	70 - 130	3	20
Methyl tert-butyl ether	25.0	23.4		ug/L		94	70 - 130	2	20
Methylene Chloride	25.0	22.7		ug/L		91	70 - 130	3	20
m-Xylene & p-Xylene	25.0	24.2		ug/L		97	70 - 130	3	20
Naphthalene	25.0	24.4		ug/L		98	70 - 130	4	20
n-Butylbenzene	25.0	24.0		ug/L		96	70 - 130	5	20
N-Propylbenzene	25.0	23.5		ug/L		94	70 - 130	3	20
o-Xylene	25.0	24.6		ug/L		98	70 - 130	0	20
sec-Butylbenzene	25.0	23.9		ug/L		96	70 - 130	3	20
Styrene	25.0	24.8		ug/L		99	70 - 130	0	20
Tert-amyl methyl ether	25.0	22.9		ug/L		91	70 - 130	0	20
Tert-butyl ether	25.0	22.3		ug/L		89	70 - 130	0	20
tert-Butylbenzene	25.0	24.8		ug/L		99	70 - 130	4	20
Tetrachloroethene	25.0	27.0		ug/L		108	70 - 130	2	20
Tetrahydrofuran	50.0	45.9		ug/L		92	70 - 130	3	20
Toluene	25.0	24.3		ug/L		97	70 ₋ 130	1	20
trans-1,2-Dichloroethene	25.0	23.1		ug/L		92	70 - 130	3	20
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	70 - 130	0	20
Trichloroethene	25.0	24.1		ug/L		97	70 - 130	2	20
Trichlorofluoromethane	25.0	20.5		ug/L		82	70 - 130	2	20
Vinyl chloride	25.0	20.4		ug/L		81	70 - 130	4	20
Dibromomethane	25.0	22.6		ug/L		91	70 ₋ 130	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

TestAmerica Buffalo

Page 95 of 129

Spike

MS MS

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

ND

ND

ND

ND

ND

ND

ND

310

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: 480-57495-33 MS

Matrix: Water

Carbon tetrachloride

Chlorobromomethane

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorobromomethane

Dichlorodifluoromethane

Chlorobenzene

Chloroethane

Chloromethane

Chloroform

Ethyl ether

Ethylbenzene

Ethylene Dibromide

Hexachlorobutadiene

Analysis Batch: 175074

Client Sample ID: REW-12-20140406-01 Prep Type: Total/NA

%Rec.

		- up.o	- p						,0.100.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		100	81.2		ug/L		81	70 - 130	
1,1,1-Trichloroethane	ND		100	62.2	F1	ug/L		62	70 - 130	
1,1,2,2-Tetrachloroethane	ND		100	92.0		ug/L		92	70 - 130	
1,1,2-Trichloroethane	ND		100	86.2		ug/L		86	70 - 130	
1,1-Dichloroethane	ND		100	70.1		ug/L		70	70 - 130	
1,1-Dichloroethene	ND		100	59.6	F1	ug/L		60	70 - 130	
1,1-Dichloropropene	ND		100	61.7	F1	ug/L		62	70 - 130	
1,2,3-Trichlorobenzene	ND		100	80.9		ug/L		81	70 - 130	
1,2,3-Trichloropropane	ND		100	92.3		ug/L		92	70 - 130	
1,2,4-Trichlorobenzene	ND		100	74.6		ug/L		75	70 - 130	
1,2,4-Trimethylbenzene	ND		100	72.9		ug/L		73	70 - 130	
1,2-Dibromo-3-Chloropropane	ND		100	98.1		ug/L		98	70 - 130	
1,2-Dichlorobenzene	ND		100	78.0		ug/L		78	70 - 130	
1,2-Dichloroethane	ND		100	74.7		ug/L		75	70 - 130	
1,2-Dichloropropane	ND		100	75.6		ug/L		76	70 - 130	
1,3,5-Trimethylbenzene	ND		100	69.4	F1	ug/L		69	70 - 130	
1,3-Dichlorobenzene	ND		100	74.5		ug/L		74	70 - 130	
1,3-Dichloropropane	ND		100	84.6		ug/L		85	70 - 130	
1,4-Dichlorobenzene	ND		100	75.6		ug/L		76	70 - 130	
1,4-Dioxane	ND	*	2000	1520		ug/L		76	70 - 130	
2,2-Dichloropropane	ND		100	55.3	F1	ug/L		55	70 - 130	
2-Butanone (MEK)	ND		500	504		ug/L		101	70 - 130	
2-Chlorotoluene	ND		100	72.9		ug/L		73	70 - 130	
2-Hexanone	ND	*	500	703	F1	ug/L		141	70 - 130	
4-Chlorotoluene	ND		100	76.3		ug/L		76	70 - 130	
4-Isopropyltoluene	ND		100	67.8	F1	ug/L		68	70 - 130	
4-Methyl-2-pentanone (MIBK)	ND		500	485		ug/L		97	70 - 130	
Acetone	ND		500	422		ug/L		84	70 - 130	
Benzene	ND		100	69.2	F1	ug/L		69	70 - 130	
Bromobenzene	ND		100	75.8		ug/L		76	70 - 130	
Bromoform	ND		100	84.4		ug/L		84	70 - 130	
Bromomethane	ND		100	61.2	F1	ug/L		61	70 - 130	
Carbon disulfide	ND		100	62.3	F1	ug/L		62	70 - 130	

100

100

100

98.0

100

100

100

100

100

100

100

100

100

100

100

62.0 F1

72.4

83.0

85.8

62.2 F1

69.4 F1

61.7 F1

50.8 F1

66.6 F1

382

72.2

76.8

82.8

86.9

72.5

ug/L

62

72

83

88

62

69

62

76

72

77

51

83

67

87

73

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57495-33 MS

Matrix: Water

Analysis Batch: 175074

Client Sample ID: REW-12-20140406-01 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Isopropyl ether	ND		100	72.8		ug/L		73	70 - 130	
Isopropylbenzene	ND		100	65.0	F1	ug/L		65	70 _ 130	
Methyl tert-butyl ether	ND		100	84.3		ug/L		84	70 - 130	
Methylene Chloride	ND		100	74.3		ug/L		74	70 _ 130	
m-Xylene & p-Xylene	ND		100	70.5		ug/L		71	70 - 130	
Naphthalene	ND		100	85.8		ug/L		86	70 - 130	
n-Butylbenzene	ND		100	65.6	F1	ug/L		66	70 _ 130	
N-Propylbenzene	ND		100	64.2	F1	ug/L		64	70 - 130	
o-Xylene	ND		100	72.4		ug/L		72	70 - 130	
sec-Butylbenzene	ND		100	65.1	F1	ug/L		65	70 _ 130	
Styrene	ND		100	74.7		ug/L		75	70 - 130	
Tert-amyl methyl ether	ND		100	79.3		ug/L		79	70 - 130	
Tert-butyl ethyl ether	ND		100	73.8		ug/L		74	70 _ 130	
tert-Butylbenzene	ND		100	66.5	F1	ug/L		67	70 - 130	
Tetrachloroethene	ND		100	66.5	F1	ug/L		64	70 - 130	
Tetrahydrofuran	ND		200	194		ug/L		97	70 - 130	
Toluene	28		100	98.6		ug/L		71	70 - 130	
trans-1,2-Dichloroethene	ND		100	68.1	F1	ug/L		68	70 - 130	
trans-1,3-Dichloropropene	ND		100	80.6		ug/L		81	70 - 130	
Trichloroethene	50		100	118	F1	ug/L		68	70 - 130	
Trichlorofluoromethane	ND		100	51.8	F1	ug/L		52	70 - 130	
Vinyl chloride	55		100	108	F1	ug/L		52	70 _ 130	
Dibromomethane	ND		100	80.5		ug/L		81	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 480-57495-33 MSD

Matrix: Water

Analysis Batch: 175074

Client Sample ID: F	REW-12-20140406-01
	Prep Type: Total/NA

7											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		100	84.0		ug/L		84	70 - 130	3	20
1,1,1-Trichloroethane	ND		100	66.7	F1	ug/L		67	70 - 130	7	20
1,1,2,2-Tetrachloroethane	ND		100	92.8		ug/L		93	70 - 130	1	20
1,1,2-Trichloroethane	ND		100	87.1		ug/L		87	70 - 130	1	20
1,1-Dichloroethane	ND		100	74.1		ug/L		74	70 - 130	6	20
1,1-Dichloroethene	ND		100	64.6	F1	ug/L		65	70 - 130	8	20
1,1-Dichloropropene	ND		100	68.2	F1	ug/L		68	70 - 130	10	20
1,2,3-Trichlorobenzene	ND		100	87.2		ug/L		87	70 - 130	7	20
1,2,3-Trichloropropane	ND		100	93.7		ug/L		94	70 - 130	2	20
1,2,4-Trichlorobenzene	ND		100	80.6		ug/L		81	70 - 130	8	20
1,2,4-Trimethylbenzene	ND		100	78.0		ug/L		78	70 - 130	7	20
1,2-Dibromo-3-Chloropropane	ND		100	98.6		ug/L		99	70 - 130	1	20
1,2-Dichlorobenzene	ND		100	81.8		ug/L		82	70 - 130	5	20
1,2-Dichloroethane	ND		100	76.6		ug/L		77	70 - 130	3	20
I control of the cont											

TestAmerica Buffalo

Page 97 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57495-33 MSD

Matrix: Water

Analysis Batch: 175074

Client Sample II	D: REW-12-20140406-01
	Prep Type: Total/NA

	Sample Sample	e Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Qualific		Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	ND	100	80.4		ug/L		80	70 - 130	6	20
1,3,5-Trimethylbenzene	ND	100	74.6		ug/L		75	70 - 130	7	20
1,3-Dichlorobenzene	ND	100	79.7		ug/L		80	70 - 130	7	20
1,3-Dichloropropane	ND	100	87.7		ug/L		88	70 - 130	4	20
1,4-Dichlorobenzene	ND	100	80.2		ug/L		80	70 - 130	6	20
1,4-Dioxane	ND *	2000	1810		ug/L		90	70 - 130	18	20
2,2-Dichloropropane	ND	100	58.6	F1	ug/L		59	70 - 130	6	20
2-Butanone (MEK)	ND	500	512		ug/L		102	70 - 130	1	20
2-Chlorotoluene	ND	100	77.5		ug/L		77	70 - 130	6	20
2-Hexanone	ND *	500	699	F1	ug/L		140	70 - 130	1	20
4-Chlorotoluene	ND	100	81.9		ug/L		82	70 - 130	7	20
4-Isopropyltoluene	ND	100	74.4		ug/L		74	70 - 130	9	20
4-Methyl-2-pentanone (MIBK)	ND	500	478		ug/L		96	70 - 130	1	20
Acetone	ND	500	390		ug/L		78	70 - 130	8	20
Benzene	ND	100	73.0		ug/L		73	70 - 130	5	20
Bromobenzene	ND	100	82.2		ug/L		82	70 - 130	8	20
Bromoform	ND	100	88.1		ug/L		88	70 - 130	4	20
Bromomethane	ND	100	66.2	F1	ug/L		66	70 - 130	8	20
Carbon disulfide	ND	100	68.7	F1	ug/L		69	70 - 130	10	20
Carbon tetrachloride	ND	100	68.2	F1	ug/L		68	70 - 130	10	20
Chlorobenzene	ND	100	78.0		ug/L		78	70 - 130	8	20
Chlorobromomethane	ND	100	84.6		ug/L		85	70 - 130	2	20
Chlorodibromomethane	ND	98.0	88.8		ug/L		91	70 - 130	3	20
Chloroethane	ND	100	70.6		ug/L		71	70 - 130	13	20
Chloroform	ND	100	73.1		ug/L		73	70 - 130	5	20
Chloromethane	ND	100	69.9		ug/L		70	70 - 130	12	20
cis-1,2-Dichloroethene	310	100	373	F1	ug/L		68	70 - 130	2	20
cis-1,3-Dichloropropene	ND	100	76.9		ug/L		77	70 - 130	6	20
Dichlorobromomethane	ND	100	80.3		ug/L		80	70 - 130	5	20
Dichlorodifluoromethane	ND	100	59.2	F1	ug/L		59	70 - 130	15	20
Ethyl ether	ND	100	84.9		ug/L		85	70 - 130	2	20
Ethylbenzene	ND	100	71.9		ug/L		72	70 - 130	8	20
Ethylene Dibromide	ND	100	89.5		ug/L		89	70 - 130	3	20
Hexachlorobutadiene	ND	100	81.5		ug/L		82	70 - 130	12	20
Isopropyl ether	ND	100	71.6		ug/L		72	70 - 130	2	20
Isopropylbenzene	ND	100	70.4		ug/L		70	70 - 130	8	20
Methyl tert-butyl ether	ND	100	84.7		ug/L		85	70 - 130	0	20
Methylene Chloride	ND	100	76.2		ug/L		76	70 - 130	2	20
m-Xylene & p-Xylene	ND	100	76.3		ug/L		76	70 - 130	8	20
Naphthalene	ND	100	89.7		ug/L		90	70 - 130	4	20
n-Butylbenzene	ND	100	72.0		ug/L		72	70 - 130	9	20
N-Propylbenzene	ND	100	69.8		ug/L		70	70 - 130	8	20
o-Xylene	ND	100	77.7		ug/L		78	70 - 130	7	20
sec-Butylbenzene	ND	100	70.9		ug/L		71	70 - 130	9	20
Styrene	ND	100	79.3		ug/L		79	70 - 130	6	20
Tert-amyl methyl ether	ND	100	78.6		ug/L		79	70 - 130	1	20
Tert-butyl ethyl ether	ND	100	71.9		ug/L		72	70 - 130	3	20
tert-Butylbenzene	ND	100	73.6		ug/L		74	70 - 130	10	20

TestAmerica Buffalo

Page 98 of 129

4/15/2014

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57495-33 MSD

Matrix: Water

Analysis Batch: 175074

Client Sample ID: REW-12-20140406-01 Prep Type: Total/NA

7 min., 010 = accom 11 001 1											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tetrachloroethene	ND		100	72.7		ug/L		70	70 - 130	9	20
Tetrahydrofuran	ND		200	188		ug/L		94	70 - 130	3	20
Toluene	28		100	103		ug/L		76	70 - 130	5	20
trans-1,2-Dichloroethene	ND		100	70.8		ug/L		71	70 - 130	4	20
trans-1,3-Dichloropropene	ND		100	83.6		ug/L		84	70 - 130	4	20
Trichloroethene	50		100	122		ug/L		72	70 - 130	4	20
Trichlorofluoromethane	ND		100	60.8	F1	ug/L		61	70 - 130	16	20
Vinyl chloride	55		100	112	F1	ug/L		57	70 - 130	4	20
Dibromomethane	ND		100	83.2		ug/L		83	70 - 130	3	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Lab Sample ID: MB 480-175163/8

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 175163								
		MB						
Analyte		Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L			04/11/14 12:27	1
1,1,1-Trichloroethane	ND	1.0		ug/L			04/11/14 12:27	1
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			04/11/14 12:27	1
1,1,2-Trichloroethane	ND	1.0		ug/L			04/11/14 12:27	1
1,1-Dichloroethane	ND	1.0		ug/L			04/11/14 12:27	1
1,1-Dichloroethene	ND	1.0		ug/L			04/11/14 12:27	1
1,1-Dichloropropene	ND	1.0		ug/L			04/11/14 12:27	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,2,3-Trichloropropane	ND	1.0		ug/L			04/11/14 12:27	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			04/11/14 12:27	1
1,2-Dichlorobenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,2-Dichloroethane	ND	1.0		ug/L			04/11/14 12:27	1
1,2-Dichloropropane	ND	1.0		ug/L			04/11/14 12:27	1
1,3,5-Trimethylbenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,3-Dichlorobenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,3-Dichloropropane	ND	1.0		ug/L			04/11/14 12:27	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/11/14 12:27	1
1,4-Dioxane	ND	50		ug/L			04/11/14 12:27	1
2,2-Dichloropropane	ND	1.0		ug/L			04/11/14 12:27	1
2-Butanone (MEK)	ND	10		ug/L			04/11/14 12:27	1
2-Chlorotoluene	ND	1.0		ug/L			04/11/14 12:27	1
2-Hexanone	ND	10		ug/L			04/11/14 12:27	1
4-Chlorotoluene	ND	1.0		ug/L			04/11/14 12:27	1
4-Isopropyltoluene	ND	1.0		ug/L			04/11/14 12:27	1
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			04/11/14 12:27	1
Acetone	ND	50		ug/L			04/11/14 12:27	1

TestAmerica Buffalo

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-175163/8 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 175163

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

-	MB	MB MB										
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac			
Benzene	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Bromobenzene	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Bromoform	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Bromomethane	ND		2.0	u	ıg/L			04/11/14 12:27	1			
Carbon disulfide	ND		10	u	ıg/L			04/11/14 12:27	1			
Carbon tetrachloride	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Chlorobenzene	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Chlorobromomethane	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Chlorodibromomethane	ND		0.50	u	ıg/L			04/11/14 12:27	1			
Chloroethane	ND		2.0	u	ıg/L			04/11/14 12:27	1			
Chloroform	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Chloromethane	ND		2.0	u	ıg/L			04/11/14 12:27	1			
cis-1,2-Dichloroethene	ND		1.0	u	ıg/L			04/11/14 12:27	1			
cis-1,3-Dichloropropene	ND		0.40	u	ıg/L			04/11/14 12:27	1			
Dichlorobromomethane	ND		0.50	u	ıg/L			04/11/14 12:27	1			
Dichlorodifluoromethane	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Ethyl ether	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Ethylbenzene	ND		1.0	u	ig/L			04/11/14 12:27	1			
Ethylene Dibromide	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Hexachlorobutadiene	ND		0.40		ıg/L			04/11/14 12:27	1			
Isopropyl ether	ND		10	u	ıg/L			04/11/14 12:27	1			
Isopropylbenzene	ND		1.0		ıg/L			04/11/14 12:27	1			
Methyl tert-butyl ether	ND		1.0	u	ıg/L			04/11/14 12:27	1			
Methylene Chloride	ND		1.0		ig/L			04/11/14 12:27	1			
m-Xylene & p-Xylene	ND		2.0		ıg/L			04/11/14 12:27	1			
Naphthalene	ND		5.0		ıg/L			04/11/14 12:27	1			
n-Butylbenzene	ND		1.0	u	ig/L			04/11/14 12:27	1			
N-Propylbenzene	ND		1.0		ıg/L			04/11/14 12:27	1			
o-Xylene	ND		1.0		ıg/L			04/11/14 12:27	1			
sec-Butylbenzene	ND		1.0		ig/L			04/11/14 12:27	1			
Styrene	ND		1.0		ıg/L			04/11/14 12:27	1			
Tert-amyl methyl ether	ND		5.0		ıg/L			04/11/14 12:27	1			
Tert-butyl ethyl ether	ND		5.0		ig/L			04/11/14 12:27	1			
tert-Butylbenzene	ND		1.0		ıg/L			04/11/14 12:27	1			
Tetrachloroethene	ND		1.0		ıg/L			04/11/14 12:27	1			
Tetrahydrofuran	ND		10		ig/L			04/11/14 12:27	1			
Toluene	ND		1.0		ıg/L			04/11/14 12:27	1			
trans-1,2-Dichloroethene	ND		1.0		ıg/L			04/11/14 12:27	1			
trans-1,3-Dichloropropene	ND .		0.40		ig/L			04/11/14 12:27	1			
Trichloroethene	ND		1.0		ıg/L			04/11/14 12:27	1			
Trichlorofluoromethane	ND		1.0		ıg/L			04/11/14 12:27	1			
Vinyl chloride	ND		1.0		ıg/L			04/11/14 12:27				
Dibromomethane	ND		1.0		ıg/L			04/11/14 12:27	1			

04/11/14 12:27 04/11/14 12:27

Analyzed

04/11/14 12:27

Prepared

Page 100 of 129

Limits

70 - 130

70 - 130

70 - 130

MB MB %Recovery Qualifier

97

92

101

4/15/2014

TestAmerica Buffalo

Dil Fac

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: LCS 480-175163/5

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
,1,1,2-Tetrachloroethane	25.0	26.3		ug/L		105	70 - 130
,1,1-Trichloroethane	25.0	23.6		ug/L		94	70 - 130
,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	70 - 130
,1,2-Trichloroethane	25.0	24.7		ug/L		99	70 _ 130
,1-Dichloroethane	25.0	24.3		ug/L		97	70 - 130
I,1-Dichloroethene	25.0	23.3		ug/L		93	70 - 130
,1-Dichloropropene	25.0	24.1		ug/L		96	70 - 130
1,2,3-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130
1,2,3-Trichloropropane	25.0	25.2		ug/L		101	70 - 130
1,2,4-Trichlorobenzene	25.0	25.6		ug/L		103	70 - 130
1,2,4-Trimethylbenzene	25.0	26.9		ug/L		108	70 - 130
I,2-Dibromo-3-Chloropropane	25.0	25.5		ug/L		102	70 - 130
,2-Dichlorobenzene	25.0	25.5		ug/L		102	70 - 130
,2-Dichloroethane	25.0	22.2		ug/L ug/L		89	70 ₋ 130
,2-Dichloropropane	25.0	24.9		ug/L ug/L		100	70 - 130 70 - 130
I,3,5-Trimethylbenzene	25.0	26.6		ug/L ug/L		106	70 - 130
,3-Dichlorobenzene	25.0	25.7		ug/L ug/L		103	70 - 130 70 - 130
	25.0			-		99	70 - 130 70 - 130
I,3-Dichloropropane I,4-Dichlorobenzene		24.7		ug/L			
	25.0	25.5		ug/L		102	70 ₋ 130
I,4-Dioxane	500	395		ug/L		79	70 - 130
2,2-Dichloropropane	25.0	25.0		ug/L		100	70 - 130
2-Butanone (MEK)	125	131		ug/L		105	70 - 130
2-Chlorotoluene	25.0	26.4		ug/L		106	70 - 130
P-Hexanone	125	182		ug/L		145	70 - 130
-Chlorotoluene	25.0	28.0		ug/L		112	70 - 130
1-Isopropyltoluene	25.0	26.8		ug/L		107	70 - 130
I-Methyl-2-pentanone (MIBK)	125	126		ug/L		101	70 - 130
Acetone	125	104		ug/L		83	70 - 130
Benzene	25.0	24.2		ug/L		97	70 - 130
Bromobenzene	25.0	25.4		ug/L		101	70 - 130
Bromoform	25.0	23.9		ug/L		95	70 _ 130
Bromomethane	25.0	20.9		ug/L		83	70 - 130
Carbon disulfide	25.0	24.7		ug/L		99	70 - 130
Carbon tetrachloride	25.0	24.5		ug/L		98	70 - 130
Chlorobenzene	25.0	25.4		ug/L		102	70 - 130
Chlorobromomethane	25.0	25.1		ug/L		100	70 - 130
Chlorodibromomethane	24.5	25.8		ug/L		105	70 - 130
Chloroethane	25.0	22.1		ug/L		89	70 - 130
Chloroform	25.0	23.3		ug/L		93	70 - 130
Chloromethane	25.0	22.7		ug/L		91	70 - 130
sis-1,2-Dichloroethene	25.0	25.3		ug/L		101	70 - 130
is-1,3-Dichloropropene	25.0	24.8		ug/L		99	70 - 130
Dichlorobromomethane	25.0	24.5		ug/L		98	70 - 130
Dichlorodifluoromethane	25.0	24.2		ug/L		97	70 - 130
Ethyl ether	25.0	24.7		ug/L		99	70 - 130
Ethylbenzene	25.0	24.9		ug/L		100	70 - 130
Ethylene Dibromide	25.0	25.0		ug/L		100	70 - 130
Hexachlorobutadiene	25.0	27.8		ug/L		111	70 - 130

TestAmerica Buffalo

Page 101 of 129

_

4

6

R

46

11

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-175163/5

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 175163

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Isopropyl ether	25.0	22.5		ug/L		90	70 - 130
Isopropylbenzene	25.0	25.7		ug/L		103	70 - 130
Methyl tert-butyl ether	25.0	23.8		ug/L		95	70 - 130
Methylene Chloride	25.0	23.9		ug/L		95	70 - 130
m-Xylene & p-Xylene	25.0	25.9		ug/L		104	70 - 130
Naphthalene	25.0	25.0		ug/L		100	70 - 130
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 130
N-Propylbenzene	25.0	25.3		ug/L		101	70 - 130
o-Xylene	25.0	25.9		ug/L		104	70 - 130
sec-Butylbenzene	25.0	25.5		ug/L		102	70 - 130
Styrene	25.0	26.0		ug/L		104	70 - 130
Tert-amyl methyl ether	25.0	22.6		ug/L		91	70 - 130
Tert-butyl ethyl ether	25.0	21.9		ug/L		88	70 - 130
tert-Butylbenzene	25.0	26.6		ug/L		106	70 - 130
Tetrachloroethene	25.0	25.9		ug/L		104	70 - 130
Tetrahydrofuran	50.0	47.9		ug/L		96	70 - 130
Toluene	25.0	25.5		ug/L		102	70 - 130
trans-1,2-Dichloroethene	25.0	24.2		ug/L		97	70 - 130
trans-1,3-Dichloropropene	25.0	25.9		ug/L		104	70 - 130
Trichloroethene	25.0	25.1		ug/L		100	70 - 130
Trichlorofluoromethane	25.0	20.6		ug/L		83	70 - 130
Vinyl chloride	25.0	21.3		ug/L		85	70 - 130
Dibromomethane	25.0	23.0		ug/L		92	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 480-175163/6

Matrix: Water

Analysis Batch: 175163

Client Sample ID): Lab	Control Sample Dup
		Prep Type: Total/NA

Analyte	Spike Added		LCSD				%Rec.			
	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1,1,2-Tetrachloroethane	25.0	25.8		ug/L		103	70 - 130	2	20	
1,1,1-Trichloroethane	25.0	23.0		ug/L		92	70 - 130	3	20	
1,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	70 - 130	0	20	
1,1,2-Trichloroethane	25.0	24.5		ug/L		98	70 - 130	1	20	
1,1-Dichloroethane	25.0	23.8		ug/L		95	70 - 130	2	20	
1,1-Dichloroethene	25.0	22.5		ug/L		90	70 - 130	4	20	
1,1-Dichloropropene	25.0	23.2		ug/L		93	70 - 130	4	20	
1,2,3-Trichlorobenzene	25.0	25.9		ug/L		104	70 - 130	0	20	
1,2,3-Trichloropropane	25.0	25.1		ug/L		100	70 - 130	0	20	
1,2,4-Trichlorobenzene	25.0	25.5		ug/L		102	70 - 130	1	20	
1,2,4-Trimethylbenzene	25.0	26.2		ug/L		105	70 - 130	3	20	
1,2-Dibromo-3-Chloropropane	25.0	25.8		ug/L		103	70 - 130	1	20	
1,2-Dichlorobenzene	25.0	25.1		ug/L		101	70 - 130	2	20	
1,2-Dichloroethane	25.0	22.3		ug/L		89	70 - 130	0	20	

TestAmerica Buffalo

Page 102 of 129

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-175163/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 175163	Spike	LCSD	LCSD		%Rec.		RPE
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limi
1,2-Dichloropropane	25.0	24.4	ug/L	98	70 - 130	2	20
1,3,5-Trimethylbenzene	25.0	26.0	ug/L	104	70 - 130	2	20
1,3-Dichlorobenzene	25.0	25.3	ug/L	101	70 - 130	2	20
1,3-Dichloropropane	25.0	24.4	ug/L	98	70 - 130	1	20
1,4-Dichlorobenzene	25.0	25.2	ug/L	101	70 - 130	1	20
1,4-Dioxane	500	466	ug/L	93	70 - 130	16	20
2,2-Dichloropropane	25.0	23.9	ug/L	96	70 - 130	5	20
2-Butanone (MEK)	125	127	ug/L	101	70 - 130	3	20
2-Chlorotoluene	25.0	26.0	ug/L	104	70 - 130	2	20
2-Hexanone	125	182	=	145	70 ₋ 130	0	20
4-Chlorotoluene	25.0	26.7	ug/L	107	70 - 130	5	20
4-Isopropyltoluene	25.0	26.0	ug/L	104	70 - 130	3	20
4-Methyl-2-pentanone (MIBK)	125	125	ug/L	100	70 - 130	1	20
Acetone	125	103	ug/L	82	70 - 130	1	20
Benzene	25.0	23.6	ug/L	95	70 ₋ 130	3	20
Bromobenzene	25.0	25.4	ug/L	102	70 - 130	0	20
Bromoform	25.0	24.1	ug/L	96	70 - 130	1	20
Bromomethane	25.0	20.3	ug/L	81	70 ₋ 130	3	20
Carbon disulfide	25.0	24.0	ug/L	96	70 - 130	3	20
Carbon tetrachloride	25.0	23.8	ug/L	95	70 - 130	3	20
Chlorobenzene	25.0	24.5	ug/L	98	70 - 130	4	20
Chlorobromomethane	25.0	24.4	ug/L	97	70 - 130 70 ₋ 130	3	20
Chlorodibromomethane	24.5	25.7	ug/L	105	70 - 130		20
Chloroethane	25.0	21.3	ug/L	85	70 - 130	4	20
Chloroform	25.0	22.8	ug/L	91	70 - 130 70 - 130	2	20
Chloromethane	25.0	21.5	ug/L	86	70 - 130	5	20
cis-1,2-Dichloroethene	25.0	24.7	ug/L	99	70 - 130 70 ₋ 130	2	20
cis-1,3-Dichloropropene	25.0	24.7	ug/L	99	70 - 130 70 - 130	0	20
Dichlorobromomethane	25.0	24.0	ug/L	96	70 - 130	2	20
Dichlorodifluoromethane	25.0	22.6	ug/L	90	70 - 130 70 - 130	7	20
Ethyl ether	25.0	24.4	ug/L	98	70 - 130	1	20
Ethylbenzene	25.0	24.4	ug/L	97	70 - 130	2	20
Ethylene Dibromide	25.0	24.3	ug/L	97	70 - 130	3	20
Hexachlorobutadiene	25.0	27.6		111	70 - 130	0	20
Isopropyl ether	25.0	22.1	ug/L	88	70 - 130	2	20
	25.0		ug/L		70 - 130 70 - 130		
Isopropylbenzene		24.9 24.0	ug/L	99	70 - 130 70 - 130	3	20
Methyl tert-butyl ether	25.0		ug/L	96		1	20
Methylene Chloride	25.0	23.2	ug/L	93	70 ₋ 130	3	20
m-Xylene & p-Xylene	25.0	25.2	ug/L	101	70 ₋ 130	3	20
Naphthalene	25.0	25.5	ug/L	102	70 - 130	2	20
n-Butylbenzene	25.0	25.4	ug/L	102	70 - 130	1	20
N-Propylbenzene	25.0	24.5	ug/L	98	70 ₋ 130	3	20
o-Xylene	25.0	25.2	ug/L	101	70 - 130	3	20
sec-Butylbenzene	25.0	25.0	ug/L	100	70 - 130	2	20
Styrene	25.0	25.4	ug/L	102	70 - 130	2	20
Tert-amyl methyl ether	25.0	22.3	ug/L	89	70 - 130	1	20
Tert-butyl ethyl ether	25.0	21.6	ug/L	86	70 - 130	1	20
tert-Butylbenzene	25.0	25.7	ug/L	103	70 - 130	3	20

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-175163/6

Matrix: Water

Analysis Batch: 175163

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tetrachloroethene	25.0	25.5		ug/L		102	70 - 130	2	20
Tetrahydrofuran	50.0	47.5		ug/L		95	70 - 130	1	20
Toluene	25.0	24.8		ug/L		99	70 - 130	3	20
trans-1,2-Dichloroethene	25.0	23.2		ug/L		93	70 - 130	4	20
trans-1,3-Dichloropropene	25.0	25.4		ug/L		102	70 - 130	2	20
Trichloroethene	25.0	24.1		ug/L		96	70 - 130	4	20
Trichlorofluoromethane	25.0	19.6		ug/L		78	70 - 130	5	20
Vinyl chloride	25.0	20.3		ug/L		81	70 - 130	5	20
Dibromomethane	25.0	23.0		ug/L		92	70 - 130	0	20

LCSD LCSD

Surrogate	%Recovery Qual	ifier Limits
Toluene-d8 (Surr)	100	70 - 130
1,2-Dichloroethane-d4 (Surr)	103	70 - 130
4-Bromofluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 480-57495-17 MS

Matrix: Water

Client Sample ID: MW-551-20140408-01

Prep Type: Total/NA

Analysis Batch: 175163										
	•	Sample	Spike	MS	MS				%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		1000	1070		ug/L		107	70 - 130	
1,1,1-Trichloroethane	ND		1000	980		ug/L		98	70 - 130	
1,1,2,2-Tetrachloroethane	ND		1000	992		ug/L		99	70 - 130	
1,1,2-Trichloroethane	ND		1000	985		ug/L		99	70 - 130	
1,1-Dichloroethane	ND		1000	1010		ug/L		101	70 - 130	
1,1-Dichloroethene	ND		1000	987		ug/L		99	70 - 130	
1,1-Dichloropropene	ND		1000	994		ug/L		99	70 - 130	
1,2,3-Trichlorobenzene	ND		1000	1010		ug/L		101	70 - 130	
1,2,3-Trichloropropane	ND		1000	995		ug/L		99	70 - 130	
1,2,4-Trichlorobenzene	ND		1000	975		ug/L		97	70 - 130	
1,2,4-Trimethylbenzene	ND		1000	1050		ug/L		105	70 - 130	
1,2-Dibromo-3-Chloropropane	ND		1000	975		ug/L		97	70 - 130	
1,2-Dichlorobenzene	ND		1000	1010		ug/L		101	70 - 130	
1,2-Dichloroethane	ND		1000	907		ug/L		91	70 - 130	
1,2-Dichloropropane	ND		1000	1020		ug/L		102	70 - 130	
1,3,5-Trimethylbenzene	ND		1000	1040		ug/L		104	70 - 130	
1,3-Dichlorobenzene	ND		1000	1020		ug/L		102	70 - 130	
1,3-Dichloropropane	ND		1000	993		ug/L		99	70 - 130	
1,4-Dichlorobenzene	ND		1000	1010		ug/L		101	70 - 130	
1,4-Dioxane	ND		20000	15000		ug/L		75	70 - 130	
2,2-Dichloropropane	ND		1000	881		ug/L		88	70 - 130	
2-Butanone (MEK)	ND		5000	6380		ug/L		124	70 - 130	
2-Chlorotoluene	ND		1000	1050		ug/L		105	70 - 130	
2-Hexanone	ND	*	5000	7010	F1	ug/L		140	70 - 130	
4-Chlorotoluene	ND		1000	1080		ug/L		108	70 - 130	
4-Isopropyltoluene	ND		1000	1050		ug/L		105	70 - 130	
4-Methyl-2-pentanone (MIBK)	ND		5000	4930		ug/L		99	70 - 130	
Acetone	15000		5000	19300		ug/L		92	70 - 130	

TestAmerica Buffalo

Spike

MS MS

TestAmerica Job ID: 480-57495-1

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Lab Sample ID: 480-57495-17 MS

Matrix: Water

Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Tetrahydrofuran

Trichloroethene

Vinyl chloride

Dibromomethane

Toluene

Analysis Batch: 175163

Client Sample ID: MW-551-20140408-01

%Rec.

			Prep Type: Total/NA	

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		1000	1000		ug/L		100	70 - 130	
Bromobenzene	ND		1000	1020		ug/L		102	70 - 130	
Bromoform	ND		1000	938		ug/L		94	70 - 130	
Bromomethane	ND		1000	904		ug/L		90	70 - 130	
Carbon disulfide	ND		1000	1000		ug/L		100	70 - 130	
Carbon tetrachloride	ND		1000	1020		ug/L		102	70 - 130	
Chlorobenzene	ND		1000	1010		ug/L		101	70 - 130	
Chlorobromomethane	ND		1000	1040		ug/L		104	70 - 130	
Chlorodibromomethane	ND		980	1020		ug/L		104	70 - 130	
Chloroethane	ND		1000	966		ug/L		97	70 - 130	
Chloroform	ND		1000	972		ug/L		97	70 - 130	
Chloromethane	ND		1000	989		ug/L		99	70 - 130	
cis-1,2-Dichloroethene	ND		1000	1030		ug/L		103	70 - 130	
cis-1,3-Dichloropropene	ND		1000	948		ug/L		95	70 - 130	
Dichlorobromomethane	ND		1000	994		ug/L		99	70 - 130	
Dichlorodifluoromethane	ND		1000	1040		ug/L		104	70 - 130	
Ethyl ether	ND		1000	997		ug/L		100	70 - 130	
Ethylbenzene	ND		1000	1000		ug/L		100	70 - 130	
Ethylene Dibromide	ND		1000	992		ug/L		99	70 - 130	
Hexachlorobutadiene	ND		1000	1100		ug/L		110	70 - 130	
Isopropyl ether	ND		1000	903		ug/L		90	70 - 130	
Isopropylbenzene	ND		1000	1010		ug/L		101	70 - 130	
Methyl tert-butyl ether	ND		1000	970		ug/L		97	70 - 130	
Methylene Chloride	ND		1000	1010		ug/L		101	70 - 130	
m-Xylene & p-Xylene	ND		1000	1040		ug/L		104	70 - 130	
Naphthalene	ND		1000	952		ug/L		95	70 - 130	
n-Butylbenzene	ND		1000	1010		ug/L		101	70 - 130	
N-Propylbenzene	ND		1000	988		ug/L		99	70 - 130	
o-Xylene	ND		1000	1040		ug/L		104	70 - 130	
sec-Butylbenzene	ND		1000	1020		ug/L		102	70 - 130	
Styrene	ND		1000	1030		ug/L		103	70 - 130	
Tert-amyl methyl ether	ND		1000	898		ug/L		90	70 - 130	
Tert-butyl ethyl ether	ND		1000	878		ug/L		88	70 - 130	
tert-Butylbenzene	ND		1000	1050		ug/L		105	70 - 130	

1000

2000

1000

1000

1000

1000

1000

1000

1000

1020

1910

1030

1020

979

1030

894

966

945

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130

ND

ND

ND

ND

ND

ND

ND

ND

ND

T 103 70 - 130 1,2-Dichloroethane-d4 (Surr) 102 70 - 130 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo

102

95

103

102

98

103

89

97

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57495-17 MSD	Client Sample ID: MW-551-20140408-01
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 175163	

Analysis Batch: 175163	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	Result		Unit	D	%Rec	Limits	RPD	Limi
1,1,1,2-Tetrachloroethane	ND		1000	1030		ug/L		103	70 - 130	4	20
1,1,1-Trichloroethane	ND		1000	931		ug/L		93	70 - 130	5	20
1,1,2,2-Tetrachloroethane	ND		1000	985		ug/L		98	70 - 130	1	20
1,1,2-Trichloroethane	ND		1000	978		ug/L		98	70 - 130	1	20
1,1-Dichloroethane	ND		1000	974		ug/L		97	70 - 130	4	20
1,1-Dichloroethene	ND		1000	923		ug/L		92	70 - 130	7	20
1,1-Dichloropropene	ND		1000	961		ug/L		96	70 - 130	3	20
1,2,3-Trichlorobenzene	ND		1000	1020		ug/L		102	70 - 130	1	20
1,2,3-Trichloropropane	ND		1000	973		ug/L		97	70 - 130	2	20
1,2,4-Trichlorobenzene	ND		1000	985		ug/L		98	70 - 130	1	20
1,2,4-Trimethylbenzene	ND		1000	1030		ug/L		103	70 ₋ 130	2	20
1,2-Dibromo-3-Chloropropane	ND		1000	1010		ug/L		101	70 ₋ 130	4	20
1,2-Dichlorobenzene	ND		1000	996		ug/L		100	70 - 130	1	20
1,2-Dichloroethane	ND		1000	898		ug/L		90	70 - 130	1	20
1,2-Dichloropropane	ND		1000	994		ug/L		99	70 - 130	2	20
1,3,5-Trimethylbenzene	ND		1000	1020		ug/L		102	70 - 130	2	20
1,3-Dichlorobenzene	ND		1000	1010		ug/L		101	70 - 130	2	20
1,3-Dichloropropane	ND		1000	982		ug/L		98	70 - 130	1	20
1,4-Dichlorobenzene	ND		1000	999		ug/L		100	70 - 130	<u>.</u> 1	20
1,4-Dioxane	ND		20000	18400	F2	ug/L		92	70 - 130	21	20
2,2-Dichloropropane	ND		1000	839	12	ug/L		84	70 - 130 70 ₋ 130	5	20
2-Butanone (MEK)	ND		5000	6550		ug/L		127	70 - 130	3	20
2-Chlorotoluene	ND		1000	1030		ug/L		103	70 - 130 70 ₋ 130	2	20
2-Hexanone	ND	*	5000	7160	F1	ug/L		143	70 - 130 70 - 130	2	20
4-Chlorotoluene	ND		1000	1070		ug/L		107	70 - 130	2	20
4-Isopropyltoluene	ND		1000	1020		ug/L		102	70 - 130 70 ₋ 130	3	20
4-Methyl-2-pentanone (MIBK)	ND		5000	4950		ug/L		99	70 - 130 70 - 130	0	20
Acetone	15000		5000	19000		ug/L		85	70 - 130		20
Benzene	ND		1000	966		ug/L		97	70 - 130 70 - 130	4	20
Bromobenzene	ND		1000	1000		ug/L		100	70 - 130	2	20
Bromoform	ND		1000	943		ug/L		94	70 - 130	0	20
Bromomethane	ND		1000	832		ug/L		83	70 - 130	8	20
Carbon disulfide	ND		1000	987		ug/L		99	70 - 130 70 - 130	2	20
Carbon tetrachloride	ND		1000	971		ug/L		97	70 - 130	4	20
Chlorobenzene	ND		1000	1000		ug/L		100	70 - 130	1	20
Chlorobromomethane	ND		1000	1010		ug/L		100	70 - 130 70 - 130	4	20
Chlorodibromomethane	ND		980	1010		ug/L		103	70 - 130	1 1	20
Chloroethane	ND ND		1000	884		ug/L		88	70 - 130 70 - 130	9	20
Chloroform	ND		1000	932		ug/L		93	70 - 130 70 - 130	4	20
Chloromethane											
cis-1,2-Dichloroethene	ND		1000	893		ug/L		89 100	70 ₋ 130	10	20
,	ND		1000	1000		ug/L		100	70 ₋ 130	3	20
cis-1,3-Dichloropropene	ND		1000	960		ug/L		96	70 - 130	1	20
Dichlorobromomethane	ND		1000	988		ug/L		99	70 ₋ 130	1	20
Dichlorodifluoromethane	ND		1000	941		ug/L		94	70 ₋ 130	10	20
Ethyl ether	ND		1000	983		ug/L		98	70 - 130		20
Ethylbenzene	ND		1000	981		ug/L		98	70 - 130	2	20
Ethylene Dibromide	ND		1000	981		ug/L		98	70 - 130	1	20

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-57495-17 MSD

Matrix: Water

Analysis Batch: 175163

Client Sample ID: MW-551-20140408-01

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropyl ether	ND		1000	892		ug/L		89	70 - 130	1	20
Isopropylbenzene	ND		1000	983		ug/L		98	70 - 130	2	20
Methyl tert-butyl ether	ND		1000	954		ug/L		95	70 - 130	2	20
Methylene Chloride	ND		1000	965		ug/L		96	70 - 130	4	20
m-Xylene & p-Xylene	ND		1000	1020		ug/L		102	70 - 130	2	20
Naphthalene	ND		1000	979		ug/L		98	70 - 130	3	20
n-Butylbenzene	ND		1000	971		ug/L		97	70 - 130	4	20
N-Propylbenzene	ND		1000	975		ug/L		98	70 - 130	1	20
o-Xylene	ND		1000	1010		ug/L		101	70 - 130	3	20
sec-Butylbenzene	ND		1000	990		ug/L		99	70 - 130	3	20
Styrene	ND		1000	1030		ug/L		103	70 - 130	1	20
Tert-amyl methyl ether	ND		1000	897		ug/L		90	70 - 130	0	20
Tert-butyl ethyl ether	ND		1000	865		ug/L		87	70 - 130	1	20
tert-Butylbenzene	ND		1000	1040		ug/L		104	70 - 130	1	20
Tetrachloroethene	ND		1000	991		ug/L		99	70 - 130	3	20
Tetrahydrofuran	ND		2000	1940		ug/L		97	70 - 130	2	20
Toluene	ND		1000	1010		ug/L		101	70 - 130	2	20
trans-1,2-Dichloroethene	ND		1000	971		ug/L		97	70 - 130	5	20
trans-1,3-Dichloropropene	ND		1000	976		ug/L		98	70 - 130	0	20
Trichloroethene	ND		1000	998		ug/L		100	70 - 130	3	20
Trichlorofluoromethane	ND		1000	821		ug/L		82	70 - 130	9	20
Vinyl chloride	ND		1000	874		ug/L		87	70 - 130	10	20
Dibromomethane	ND		1000	947		ug/L		95	70 - 130	0	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	105		70 - 130

Lab Sample ID: MB 480-175485/9

Matrix: Water

Analysis Batch: 175485

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			04/13/14 22:07	1
1,1,1-Trichloroethane	ND		1.0		ug/L			04/13/14 22:07	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			04/13/14 22:07	1
1,1,2-Trichloroethane	ND		1.0		ug/L			04/13/14 22:07	1
1,1-Dichloroethane	ND		1.0		ug/L			04/13/14 22:07	1
1,1-Dichloroethene	ND		1.0		ug/L			04/13/14 22:07	1
1,1-Dichloropropene	ND		1.0		ug/L			04/13/14 22:07	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			04/13/14 22:07	1
1,2,3-Trichloropropane	ND		1.0		ug/L			04/13/14 22:07	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/13/14 22:07	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			04/13/14 22:07	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			04/13/14 22:07	1
1,2-Dichlorobenzene	ND		1.0		ug/L			04/13/14 22:07	1
1,2-Dichloroethane	ND		1.0		ug/L			04/13/14 22:07	1

TestAmerica Buffalo

Page 107 of 129

QC Sample Results

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client Sample ID: Method Blank

Lab Sample ID: MB 480-175485/9 **Prep Type: Total/NA**

Matrix: Water

	MB								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,2-Dichloropropane	ND		1.0		ug/L			04/13/14 22:07	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			04/13/14 22:07	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/13/14 22:07	
1,3-Dichloropropane	ND		1.0		ug/L			04/13/14 22:07	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/13/14 22:07	
1,4-Dioxane	ND		50		ug/L			04/13/14 22:07	
2,2-Dichloropropane	ND		1.0		ug/L			04/13/14 22:07	
2-Butanone (MEK)	ND		10		ug/L			04/13/14 22:07	
2-Chlorotoluene	ND		1.0		ug/L			04/13/14 22:07	
2-Hexanone	ND		10		ug/L			04/13/14 22:07	
4-Chlorotoluene	ND		1.0		ug/L			04/13/14 22:07	
4-Isopropyltoluene	ND		1.0		ug/L			04/13/14 22:07	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			04/13/14 22:07	
Acetone	ND		50		ug/L			04/13/14 22:07	
Benzene	ND		1.0		ug/L			04/13/14 22:07	
Bromobenzene	ND		1.0		ug/L			04/13/14 22:07	
Bromoform	ND		1.0		ug/L			04/13/14 22:07	
Bromomethane	ND		2.0		ug/L			04/13/14 22:07	
Carbon disulfide	ND		10		ug/L			04/13/14 22:07	
Carbon tetrachloride	ND		1.0		ug/L			04/13/14 22:07	
Chlorobenzene	ND		1.0		ug/L			04/13/14 22:07	
Chlorobromomethane	ND		1.0		ug/L			04/13/14 22:07	
Chlorodibromomethane	ND		0.50		ug/L			04/13/14 22:07	
Chloroethane	ND		2.0		ug/L			04/13/14 22:07	
Chloroform	ND		1.0		ug/L			04/13/14 22:07	
Chloromethane	ND		2.0		ug/L			04/13/14 22:07	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/13/14 22:07	
cis-1,3-Dichloropropene	ND		0.40		ug/L			04/13/14 22:07	
Dichlorobromomethane	ND		0.50					04/13/14 22:07	
Dichlorodifluoromethane	ND		1.0		ug/L			04/13/14 22:07	
					ug/L				
Ethyl ether	ND		1.0		ug/L			04/13/14 22:07	
Ethylbenzene	ND		1.0		ug/L			04/13/14 22:07 04/13/14 22:07	
Ethylene Dibromide	ND		1.0		ug/L				
Hexachlorobutadiene	ND		0.40		ug/L			04/13/14 22:07	
Isopropyl ether	ND		10		ug/L			04/13/14 22:07	
Isopropylbenzene	ND		1.0		ug/L			04/13/14 22:07	
Methyl tert-butyl ether	ND		1.0		ug/L			04/13/14 22:07	
Methylene Chloride	ND		1.0		ug/L			04/13/14 22:07	
m-Xylene & p-Xylene	ND		2.0		ug/L			04/13/14 22:07	
Naphthalene	ND		5.0		ug/L			04/13/14 22:07	
n-Butylbenzene	ND		1.0		ug/L			04/13/14 22:07	
N-Propylbenzene	ND		1.0		ug/L			04/13/14 22:07	
o-Xylene	ND		1.0		ug/L			04/13/14 22:07	
sec-Butylbenzene	ND		1.0		ug/L			04/13/14 22:07	
Styrene	ND		1.0		ug/L			04/13/14 22:07	
Tert-amyl methyl ether	ND		5.0		ug/L			04/13/14 22:07	
Tert-butyl ethyl ether	ND		5.0		ug/L			04/13/14 22:07	
tert-Butylbenzene	ND		1.0		ug/L			04/13/14 22:07	

QC Sample Results

Client: Innovative Engineering Solutions, Inc

Lab Sample ID: MB 480-175485/9

Project/Site: IDS Wayland

Analysis Batch: 175485

Matrix: Water

TestAmerica Job ID: 480-57495-1

Client Sample ID: Method Blank

Prep Type: Total/NA

ı icp	Type.	TOTALITA	

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND ND	1.0	ug/L		04/13/14 22:07	1
Tetrahydrofuran	ND	10	ug/L		04/13/14 22:07	1
Toluene	ND	1.0	ug/L		04/13/14 22:07	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		04/13/14 22:07	1
trans-1,3-Dichloropropene	ND	0.40	ug/L		04/13/14 22:07	1
Trichloroethene	ND	1.0	ug/L		04/13/14 22:07	1
Trichlorofluoromethane	ND	1.0	ug/L		04/13/14 22:07	1
Vinyl chloride	ND	1.0	ug/L		04/13/14 22:07	1
Dibromomethane	ND	1.0	ug/L		04/13/14 22:07	1

MB MB

MB MB

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	70 - 130		04/13/14 22:07	1
1,2-Dichloroethane-d4 (Surr)	105	70 - 130		04/13/14 22:07	1
4-Bromofluorobenzene (Surr)	96	70 - 130		04/13/14 22:07	1

Lab Sample ID: LCS 480-175485/6 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 175485

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	24.4		ug/L		97	70 - 130
1,1,1-Trichloroethane	25.0	24.8		ug/L		99	70 - 130
1,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	70 - 130
1,1,2-Trichloroethane	25.0	24.9		ug/L		99	70 - 130
1,1-Dichloroethane	25.0	24.7		ug/L		99	70 - 130
1,1-Dichloroethene	25.0	23.8		ug/L		95	70 - 130
1,1-Dichloropropene	25.0	25.5		ug/L		102	70 - 130
1,2,3-Trichlorobenzene	25.0	25.2		ug/L		101	70 - 130
1,2,3-Trichloropropane	25.0	24.3		ug/L		97	70 - 130
1,2,4-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130
1,2,4-Trimethylbenzene	25.0	24.6		ug/L		98	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	23.3		ug/L		93	70 - 130
1,2-Dichlorobenzene	25.0	24.9		ug/L		99	70 - 130
1,2-Dichloroethane	25.0	26.4		ug/L		106	70 - 130
1,2-Dichloropropane	25.0	26.1		ug/L		104	70 - 130
1,3,5-Trimethylbenzene	25.0	24.2		ug/L		97	70 - 130
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130
1,3-Dichloropropane	25.0	24.4		ug/L		98	70 - 130
1,4-Dichlorobenzene	25.0	24.1		ug/L		97	70 - 130
1,4-Dioxane	500	452		ug/L		90	70 - 130
2,2-Dichloropropane	25.0	23.3		ug/L		93	70 - 130
2-Butanone (MEK)	125	142		ug/L		113	70 - 130
2-Chlorotoluene	25.0	24.4		ug/L		98	70 - 130
2-Hexanone	125	125		ug/L		100	70 - 130
4-Chlorotoluene	25.0	22.0		ug/L		88	70 - 130
4-Isopropyltoluene	25.0	24.9		ug/L		100	70 - 130
4-Methyl-2-pentanone (MIBK)	125	124		ug/L		99	70 - 130
Acetone	125	125		ug/L		100	70 - 130

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-175485/6

Matrix: Water

Analysis Batch: 175485

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Dibromomethane

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	25.0	24.9		ug/L		100	70 - 130
Bromobenzene	25.0	24.3		ug/L		97	70 - 130
Bromoform	25.0	21.2		ug/L		85	70 - 130
Bromomethane	25.0	29.6		ug/L		118	70 - 130
Carbon disulfide	25.0	21.1		ug/L		84	70 - 130
Carbon tetrachloride	25.0	25.3		ug/L		101	70 - 130
Chlorobenzene	25.0	24.9		ug/L		99	70 - 130
Chlorobromomethane	25.0	25.3		ug/L		101	70 - 130
Chlorodibromomethane	24.5	24.5		ug/L		100	70 - 130
Chloroethane	25.0	28.9		ug/L		116	70 - 130
Chloroform	25.0	25.1		ug/L		100	70 - 130
Chloromethane	25.0	24.2		ug/L		97	70 - 130
cis-1,2-Dichloroethene	25.0	24.7		ug/L		99	70 - 130
cis-1,3-Dichloropropene	25.0	26.2		ug/L		105	70 - 130
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130
Dichlorodifluoromethane	25.0	22.6		ug/L		90	70 - 130
Ethyl ether	25.0	25.0		ug/L		100	70 - 130
Ethylbenzene	25.0	24.2		ug/L		97	70 - 130
Ethylene Dibromide	25.0	24.8		ug/L		99	70 - 130
Hexachlorobutadiene	25.0	25.5		ug/L		102	70 - 130
Isopropyl ether	25.0	26.3		ug/L		105	70 - 130
Isopropylbenzene	25.0	24.1		ug/L		96	70 - 130
Methyl tert-butyl ether	25.0	24.3		ug/L		97	70 - 130
Methylene Chloride	25.0	23.7		ug/L		95	70 - 130
m-Xylene & p-Xylene	25.0	24.7		ug/L		99	70 - 130
Naphthalene	25.0	25.8		ug/L		103	70 - 130
n-Butylbenzene	25.0	25.4		ug/L		102	70 - 130
N-Propylbenzene	25.0	24.2		ug/L		97	70 - 130
o-Xylene	25.0	24.1		ug/L		96	70 - 130
sec-Butylbenzene	25.0	24.7		ug/L		99	70 - 130
Styrene	25.0	24.9		ug/L		99	70 - 130
Tert-amyl methyl ether	25.0	25.7		ug/L		103	70 - 130
Tert-butyl ethyl ether	25.0	25.4		ug/L		101	70 - 130
tert-Butylbenzene	25.0	24.0		ug/L		96	70 - 130
Tetrachloroethene	25.0	26.1		ug/L		104	70 - 130
Tetrahydrofuran	50.0	65.3	*	ug/L		131	70 - 130
Toluene	25.0	24.2		ug/L		97	70 - 130
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	70 ₋ 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	105		70 - 130
1 Bromofluorobenzene (Surr)	00		70 120

TestAmerica Buffalo

95

96

108

95

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

Page 110 of 129

25.0

25.0

25.0

25.0

25.0

23.7

24.0

27.1

23.8

26.1

ug/L

ug/L

ug/L

ug/L

ug/L

4/15/2014

-

6

8

10

. . 12

13

14

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-175485/7 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 175485			LCCD						
	Spike		LCSD		_	a. –	%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	24.1		ug/L		96	70 ₋ 130	1	20
1,1,1-Trichloroethane	25.0	24.3		ug/L		97	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	24.2		ug/L		97	70 - 130	3	20
1,1,2-Trichloroethane	25.0	24.9		ug/L		100	70 - 130	0	20
1,1-Dichloroethane	25.0	24.6		ug/L		98	70 - 130	1	20
1,1-Dichloroethene	25.0	24.1		ug/L		96	70 _ 130	1	20
1,1-Dichloropropene	25.0	24.6		ug/L		98	70 - 130	4	20
1,2,3-Trichlorobenzene	25.0	25.2		ug/L		101	70 - 130	0	20
1,2,3-Trichloropropane	25.0	24.2		ug/L		97	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	25.1		ug/L		101	70 - 130	1	20
1,2,4-Trimethylbenzene	25.0	23.1		ug/L		92	70 - 130	6	20
1,2-Dibromo-3-Chloropropane	25.0	22.7		ug/L		91	70 - 130	2	20
1,2-Dichlorobenzene	25.0	23.9		ug/L		96	70 - 130	4	20
1,2-Dichloroethane	25.0	25.9		ug/L		104	70 - 130	2	20
1,2-Dichloropropane	25.0	25.8		ug/L		103	70 - 130	1	20
1,3,5-Trimethylbenzene	25.0	23.1		ug/L		92	70 - 130	4	20
1,3-Dichlorobenzene	25.0	23.8		ug/L		95	70 - 130	4	20
1,3-Dichloropropane	25.0	24.4		ug/L		98	70 - 130	0	20
1,4-Dichlorobenzene	25.0	23.2		ug/L		93	70 - 130	4	20
1,4-Dioxane	500	463		ug/L		93	70 - 130	2	20
2,2-Dichloropropane	25.0	22.8		ug/L		91	70 - 130	2	20
2-Butanone (MEK)	125	135		ug/L		108	70 - 130	4	20
2-Chlorotoluene	25.0	23.8		ug/L		95	70 - 130	2	20
2-Hexanone	125	123		ug/L		99	70 - 130	1	20
4-Chlorotoluene	25.0	21.2		ug/L		85	70 - 130	4	20
4-Isopropyltoluene	25.0	24.0		ug/L		96	70 - 130	4	20
4-Methyl-2-pentanone (MIBK)	125	121		ug/L		97	70 - 130	2	20
Acetone	125	126		ug/L		101	70 _ 130	0	20
Benzene	25.0	24.7		ug/L		99	70 - 130	1	20
Bromobenzene	25.0	23.6		ug/L		95	70 - 130	3	20
Bromoform	25.0	21.4		ug/L		86	70 _ 130	1	20
Bromomethane	25.0	30.4		ug/L		122	70 - 130	3	20
Carbon disulfide	25.0	20.4		ug/L		82	70 - 130	3	20
Carbon tetrachloride	25.0	24.7		ug/L		99	70 - 130	2	20
Chlorobenzene	25.0	23.8		ug/L		95	70 - 130	5	20
Chlorobromomethane	25.0	24.8		ug/L		99	70 - 130	2	20
Chlorodibromomethane	24.5	24.0		ug/L		98	70 - 130	2	20
Chloroethane	25.0	28.7		ug/L ug/L		115	70 - 130 70 - 130	1	20
Chloroform	25.0	25.0		_		100	70 ₋ 130	0	20
				ug/L				2	
Chloromethane	25.0	24.6		ug/L		98	70 ₋ 130		20
cis-1,2-Dichloroethene	25.0	24.2		ug/L		97	70 ₋ 130	2	20
cis-1,3-Dichloropropene	25.0	26.2		ug/L		105	70 - 130	0	20
Dichlorobromomethane	25.0	25.6		ug/L		102	70 ₋ 130	0	20
Dichlorodifluoromethane	25.0	23.1		ug/L		92	70 - 130	2	20
Ethyl ether	25.0	25.1		ug/L		100	70 - 130	0	20
Ethylbenzene	25.0	24.0		ug/L		96	70 - 130	1	20
Ethylene Dibromide	25.0	24.2		ug/L		97	70 - 130	2	20
Hexachlorobutadiene	25.0	24.3		ug/L		97	70 - 130	5	20

TestAmerica Buffalo

Page 111 of 129

4/15/2014

QC Sample Results

Client: Innovative Engineering Solutions, Inc

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Client Sample ID: Lab Control S

Lab Sample ID: LCSD 480-175485/7

Matrix: Water

Analysis Batch: 175485

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropyl ether	25.0	26.0		ug/L		104	70 - 130	1	20
Isopropylbenzene	25.0	23.1		ug/L		93	70 - 130	4	20
Methyl tert-butyl ether	25.0	24.5		ug/L		98	70 - 130	1	20
Methylene Chloride	25.0	23.9		ug/L		95	70 - 130	1	20
m-Xylene & p-Xylene	25.0	24.0		ug/L		96	70 - 130	3	20
Naphthalene	25.0	25.0		ug/L		100	70 - 130	3	20
n-Butylbenzene	25.0	23.9		ug/L		96	70 - 130	6	20
N-Propylbenzene	25.0	23.3		ug/L		93	70 - 130	4	20
o-Xylene	25.0	23.7		ug/L		95	70 - 130	2	20
sec-Butylbenzene	25.0	23.5		ug/L		94	70 - 130	5	20
Styrene	25.0	24.1		ug/L		96	70 - 130	3	20
Tert-amyl methyl ether	25.0	25.9		ug/L		103	70 - 130	1	20
Tert-butyl ethyl ether	25.0	26.0		ug/L		104	70 - 130	2	20
tert-Butylbenzene	25.0	23.3		ug/L		93	70 - 130	3	20
Tetrachloroethene	25.0	24.5		ug/L		98	70 - 130	6	20
Tetrahydrofuran	50.0	66.1	*	ug/L		132	70 - 130	1	20
Toluene	25.0	23.3		ug/L		93	70 - 130	4	20
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	23.9		ug/L		95	70 - 130	1	20
Trichloroethene	25.0	24.1		ug/L		96	70 - 130	1	20
Trichlorofluoromethane	25.0	26.2		ug/L		105	70 - 130	3	20
Vinyl chloride	25.0	23.2		ug/L		93	70 - 130	3	20
Dibromomethane	25.0	25.6		ug/L		103	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	96	70 - 130
1,2-Dichloroethane-d4 (Surr)	106	70 - 130
4-Bromofluorobenzene (Surr)	96	70 - 130

TestAmerica Buffalo

4

6

8

10

11

12

14

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

GC/MS VOA

Anal	vsis	Batch:	174684
------	------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57495-1	DEP-19M-20140405-01	Total/NA	Water	8260C	
480-57495-2	DEP-21-20140405-01	Total/NA	Water	8260C	
480-57495-3	MW-261S-20140408-01	Total/NA	Water	8260C	
480-57495-4	MW-263M-20140408-01	Total/NA	Water	8260C	
480-57495-5	MW-264M-20140408-01	Total/NA	Water	8260C	
480-57495-6	MW-265S-20140408-01	Total/NA	Water	8260C	
480-57495-7	MW-263M-20140408-01	Total/NA	Water	8260C	
480-57495-9	MW-266Ma-20140405-01	Total/NA	Water	8260C	
480-57495-10	MW-266Mb-20140405-01	Total/NA	Water	8260C	
LCS 480-174684/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-174684/7	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-174684/9	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 174949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57495-7 - DL	MW-263M-20140408-01	Total/NA	Water	8260C	
480-57495-8	MW-265D-20140408-01	Total/NA	Water	8260C	
480-57495-11	MW-267S-20140405-01	Total/NA	Water	8260C	
480-57495-12	MW-267M-20140405-01	Total/NA	Water	8260C	
480-57495-13	MW-268S-20140407	Total/NA	Water	8260C	
480-57495-14	MW-268M-20140407	Total/NA	Water	8260C	
480-57495-15	MW-268D-20140405	Total/NA	Water	8260C	
480-57495-16	MW-269Ma-20140405	Total/NA	Water	8260C	
480-57495-20	MW-560-20140407-01	Total/NA	Water	8260C	
LCS 480-174949/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-174949/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-174949/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 175074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57495-22	MW-562-20140407-01	Total/NA	Water	8260C	
480-57495-23	MW-563-20140407-01	Total/NA	Water	8260C	
480-57495-27	REW-6-20140406-01	Total/NA	Water	8260C	
480-57495-28	REW-7-20140406-01	Total/NA	Water	8260C	
480-57495-29	REW-8-20140406-01	Total/NA	Water	8260C	
480-57495-30	REW-9-20140406-01	Total/NA	Water	8260C	
480-57495-31	REW-10-20140406-01	Total/NA	Water	8260C	
480-57495-32	REW-11-20140406-01	Total/NA	Water	8260C	
480-57495-33	REW-12-20140406-01	Total/NA	Water	8260C	
480-57495-33 MS	REW-12-20140406-01	Total/NA	Water	8260C	
480-57495-33 MSD	REW-12-20140406-01	Total/NA	Water	8260C	
480-57495-34	DupX1-20140405-01	Total/NA	Water	8260C	
480-57495-35	DupX2-20140406-01	Total/NA	Water	8260C	
480-57495-36	DupX3-20140408-01	Total/NA	Water	8260C	
LCS 480-175074/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-175074/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-175074/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 175163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57495-17	MW-551-20140408-01	Total/NA	Water	8260C	

Page 113 of 129

QC Association Summary

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

GC/MS VOA (Continued)

Analysis Batch: 175163 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-57495-17 MS	MW-551-20140408-01	Total/NA	Water	8260C	
480-57495-17 MSD	MW-551-20140408-01	Total/NA	Water	8260C	
480-57495-18	MW-552-20140407-01	Total/NA	Water	8260C	
480-57495-19	MW-553-20140407-01	Total/NA	Water	8260C	
480-57495-20 - DL	MW-560-20140407-01	Total/NA	Water	8260C	
480-57495-21	MW-561-20140407-01	Total/NA	Water	8260C	
480-57495-22 - DL	MW-562-20140407-01	Total/NA	Water	8260C	
480-57495-24	REW-1-20140406-01	Total/NA	Water	8260C	
480-57495-25	REW-4-20140406-01	Total/NA	Water	8260C	
480-57495-26	REW-5-20140406-01	Total/NA	Water	8260C	
480-57495-35 - DL	DupX2-20140406-01	Total/NA	Water	8260C	
480-57495-37	Trip Blanks	Total/NA	Water	8260C	
LCS 480-175163/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-175163/6	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-175163/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 175364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-57495-3	MW-261S-20140408-01	Total/NA	Water	8260B SIM	
480-57495-7	MW-263M-20140408-01	Total/NA	Water	8260B SIM	
480-57495-9	MW-266Ma-20140405-01	Total/NA	Water	8260B SIM	
480-57495-11	MW-267S-20140405-01	Total/NA	Water	8260B SIM	
480-57495-12	MW-267M-20140405-01	Total/NA	Water	8260B SIM	
480-57495-13	MW-268S-20140407	Total/NA	Water	8260B SIM	
480-57495-14	MW-268M-20140407	Total/NA	Water	8260B SIM	
480-57495-16	MW-269Ma-20140405	Total/NA	Water	8260B SIM	
480-57495-18	MW-552-20140407-01	Total/NA	Water	8260B SIM	
480-57495-36	DupX3-20140408-01	Total/NA	Water	8260B SIM	
LCS 480-175364/4	Lab Control Sample	Total/NA	Water	8260B SIM	
LCSD 480-175364/5	Lab Control Sample Dup	Total/NA	Water	8260B SIM	
MB 480-175364/6	Method Blank	Total/NA	Water	8260B SIM	

Analysis Batch: 175485

Lab Sample ID	Client Sample ID	Prep Type		Method	Prep Batch
480-57495-36 - DL	DupX3-20140408-01	Total/NA	Water	8260C	
LCS 480-175485/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-175485/7	Lab Control Sample Dup	Total/NA	Water	8260C	
MB 480-175485/9	Method Blank	Total/NA	Water	8260C	

3

4

6

R

9

11

4.0

14

Project/Site: IDS Wayland

Client Sample ID: DEP-19M-20140405-01 Lab Sample ID: 480-57495-1

Date Collected: 04/05/14 10:30 Date Received: 04/09/14 01:30

Matrix: Water

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 174684 04/09/14 17:26 LCH TAL BUF

Lab Sample ID: 480-57495-2

Date Collected: 04/05/14 11:25

Client Sample ID: DEP-21-20140405-01

Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method Factor Type Run Number or Analyzed Analyst **Prep Type** Lab 8260C 174684 04/09/14 17:50 LCH TAL BUF Total/NA Analysis

Client Sample ID: MW-261S-20140408-01 Lab Sample ID: 480-57495-3

Date Collected: 04/08/14 07:20

Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Factor Number or Analyzed Analyst Run 8260B SIM Total/NA Analysis 2 175364 04/11/14 23:36 CDC TAL BUF Total/NA Analysis 8260C 50 174684 04/09/14 18:14 LCH TAL BUF

Client Sample ID: MW-263M-20140408-01 Lab Sample ID: 480-57495-4

Date Collected: 04/08/14 11:45 Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 174684 04/09/14 18:37 LCH TAL BUF

Client Sample ID: MW-264M-20140408-01 Lab Sample ID: 480-57495-5

Date Collected: 04/08/14 10:30 Matrix: Water

Date Received: 04/09/14 01:30

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Analysis 8260C 174684 04/09/14 19:01 LCH TAL BUF Total/NA

Client Sample ID: MW-265S-20140408-01 Lab Sample ID: 480-57495-6

Date Collected: 04/08/14 09:25

Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab 8260C 174684 04/09/14 19:25 TAL BUF Total/NA Analysis LCH

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Client Sample ID: MW-263M-20140408-01

Date Collected: 04/08/14 08:45 Date Received: 04/09/14 01:30

Lab Sample ID: 480-57495-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		2	175364	04/12/14 00:00	CDC	TAL BUF
Total/NA	Analysis	8260C	DL	5	174949	04/10/14 15:48	NMD1	TAL BUF
Total/NA	Analysis	8260C		1	174684	04/09/14 19:49	LCH	TAL BUF

Client Sample ID: MW-265D-20140408-01

Date Collected: 04/08/14 08:15

Date Received: 04/09/14 01:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	174949	04/10/14 16:14	NMD1	TAL BUF

Client Sample ID: MW-266Ma-20140405-01

Date Collected: 04/05/14 14:50 Date Received: 04/09/14 01:30

Lab Sample ID: 480-57495-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		1	175364	04/12/14 00:23	CDC	TAL BUF
Total/NA	Analysis	8260C		1	174684	04/09/14 20:37	LCH	TAL BUF

Client Sample ID: MW-266Mb-20140405-01

Batch

Date Collected: 04/05/14 15:20

Date Received: 04/09/14 01:30

Prep Type

Total/NA

Lab Sample ID:	480-57495-10
	Matrix: Water

Dilution Batch Prepared Method Factor Number or Analyzed Run Analyst Lab TAL BUF 8260C 174684 04/09/14 21:00 LCH

Client Sample ID: MW-267S-20140405-01

Batch

Type

Analysis

Date Collected: 04/05/14 13:20

Date Received: 04/09/14 01:30

|--|

Matrix: Water

Lab Sample ID: 480-57495-12

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		2	175364	04/12/14 00:48	CDC	TAL BUF
Total/NA	Analysis	8260C		5	174949	04/10/14 16:39	NMD1	TAL BUF

Client Sample ID: MW-267M-20140405-01

Date Collected: 04/05/14 12:50

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		2	175364	04/12/14 01:11	CDC	TAL BUF
Total/NA	Analysis	8260C		10	174949	04/10/14 17:04	NMD1	TAL BUF

TestAmerica Buffalo

Matrix: Water

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Client Sample ID: MW-268S-20140407

Date Collected: 04/07/14 08:45 Date Received: 04/09/14 01:30

Lab Sample ID: 480-57495-13

Lab Sample ID: 480-57495-15

Lab Sample ID: 480-57495-16

Lab Sample ID: 480-57495-18

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		1	175364	04/12/14 01:36	CDC	TAL BUF
Total/NA	Analysis	8260C		1	174949	04/10/14 17:29	NMD1	TAL BUF

Client Sample ID: MW-268M-20140407 Lab Sample ID: 480-57495-14

Date Collected: 04/07/14 09:25

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		1	175364	04/12/14 02:00	CDC	TAL BUF
Total/NA	Analysis	8260C		40	174949	04/10/14 17:54	NMD1	TAL BUF

Client Sample ID: MW-268D-20140405

Date Collected: 04/05/14 12:20

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	174949	04/10/14 18:19	NMD1	TAL BUF

Client Sample ID: MW-269Ma-20140405

Date Collected: 04/05/14 14:10

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM			175364	04/12/14 02:24	CDC	TAL BUF
Total/NA	Analysis	8260C		1	174949	04/10/14 18:44	NMD1	TAL BUF

Client Sample ID: MW-551-20140408-01

Date Collected: 04/08/14 12:05

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		40	175163	04/11/14 14:09	NMD1	TAL BUF

Client Sample ID: MW-552-20140407-01

Date Collected: 04/07/14 15:25

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		2	175364	04/12/14 02:48	CDC	TAL BUF
Total/NA	Analysis	8260C		1	175163	04/11/14 14:35	NMD1	TAL BUF

TestAmerica Buffalo

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 480-57495-17

Matrix: Water

Matrix: Water

Project/Site: IDS Wayland

Client Sample ID: MW-553-20140407-01

Client: Innovative Engineering Solutions, Inc

Lab Sample ID: 480-57495-19 Date Collected: 04/07/14 14:30 **Matrix: Water**

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 175163 04/11/14 15:00 NMD1 TAL BUF

Lab Sample ID: 480-57495-20

Client Sample ID: MW-560-20140407-01 Date Collected: 04/07/14 11:10

Date Received: 04/09/14 01:30

Matrix: Water

Batch Batch Dilution Batch Prepared Type Method Factor Number or Analyzed Prep Type Run Analyst Lab 04/10/14 20:26 Total/NA Analysis 8260C 1 174949 NMD1 TAL BUF Total/NA 8260C DL 4 175163 04/11/14 15:26 NMD1 TAL BUF Analysis

Client Sample ID: MW-561-20140407-01 Lab Sample ID: 480-57495-21

Date Collected: 04/07/14 12:00 Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 10 175163 04/11/14 15:51 NMD1 TAL BUF

Client Sample ID: MW-562-20140407-01 Lab Sample ID: 480-57495-22

Date Collected: 04/07/14 13:30 Matrix: Water

Date Received: 04/09/14 01:30

Batch Dilution Batch Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C LCH Analysis 2 175074 04/11/14 02:04 8260C NMD1 TAL BUF Total/NA Analysis DL 4 175163 04/11/14 16:16

Client Sample ID: MW-563-20140407-01 Lab Sample ID: 480-57495-23

Date Collected: 04/07/14 10:20 **Matrix: Water**

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Analyst Lab 8260C 04/11/14 02:29 LCH TAL BUF Total/NA Analysis 4 175074

Client Sample ID: REW-1-20140406-01 Lab Sample ID: 480-57495-24

Date Collected: 04/06/14 13:45 **Matrix: Water**

Date Received: 04/09/14 01:30

Ratch Dilution Ratch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 175163 04/11/14 16:42 NMD1 TAL BUF

Lab Sample ID: 480-57495-27

Lab Sample ID: 480-57495-28

Lab Sample ID: 480-57495-29

Lab Sample ID: 480-57495-30

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Project/Site: IDS Wayland

Client Sample ID: REW-4-20140406-01 Lab Sample ID: 480-57495-25

Date Collected: 04/06/14 15:20 Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 175163 04/11/14 17:07 NMD1 TAL BUF

Client Sample ID: REW-5-20140406-01 Lab Sample ID: 480-57495-26

Date Collected: 04/06/14 14:30

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method Factor Number **Prep Type** Type Run or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 175163 04/11/14 17:33 NMD1

Client Sample ID: REW-6-20140406-01

Date Collected: 04/06/14 09:05

Date Received: 04/09/14 01:30

Dilution Batch Batch Batch Prepared Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260C 5 175074 04/11/14 04:10 LCH TAL BUF

Client Sample ID: REW-7-20140406-01

Date Collected: 04/06/14 09:35

Date Received: 04/09/14 01:30

Dilution Batch Batch Batch Prepared Number Prep Type Type Method Run Factor or Analyzed Analyst Lab Total/NA Analysis 8260C 10 175074 04/11/14 04:36 LCH TAL BUF

Client Sample ID: REW-8-20140406-01

Date Collected: 04/06/14 10:45

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260C 175074 04/11/14 05:01 LCH TAL BUF Total/NA Analysis

Client Sample ID: REW-9-20140406-01

Date Collected: 04/06/14 11:40

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 175074 04/11/14 05:26 LCH TAL BUF

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

Client Sample ID: REW-10-20140406-01

Date Collected: 04/06/14 12:25

Lab Sample ID: 480-57495-31

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 04/09/14 01:30 Batch Batch Dilution Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 175074 04/11/14 05:51 LCH TAL BUF

Client Sample ID: REW-11-20140406-01 Lab Sample ID: 480-57495-32

Date Collected: 04/06/14 08:15 Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Type Run or Analyzed Analyst Lab 25 TAL BUF Total/NA Analysis 8260C 175074 04/11/14 06:16 LCH

Client Sample ID: REW-12-20140406-01 Lab Sample ID: 480-57495-33

Date Collected: 04/06/14 13:10 Date Received: 04/09/14 01:30

Dilution Batch Batch Batch Prepared Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260C 175074 04/11/14 06:42 LCH TAL BUF

Client Sample ID: DupX1-20140405-01 Lab Sample ID: 480-57495-34

Date Collected: 04/05/14 00:00 Date Received: 04/09/14 01:30

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Total/NA Analysis 8260C 175074 04/11/14 07:06 LCH TAL BUF

Client Sample ID: DupX2-20140406-01

Lab Sample ID: 480-57495-35 Date Collected: 04/06/14 00:00 Matrix: Water

Date Received: 04/09/14 01:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 04/11/14 07:31 TAL BUF Analysis 175074 LCH Total/NA Analysis 8260C DL 25 175163 04/11/14 17:58 NMD1 TAL BUF

Client Sample ID: DupX3-20140408-01 Lab Sample ID: 480-57495-36

Date Collected: 04/08/14 00:00

Date Received: 04/09/14 01:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM			175364	04/12/14 03:12	CDC	TAL BUF
Total/NA	Analysis	8260C		1	175074	04/11/14 07:57	LCH	TAL BUF
Total/NA	Analysis	8260C	DL	40	175485	04/14/14 00:11	LCH	TAL BUF

Lab Chronicle

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID: 480-57495-37

Matrix: Water

Date Collected: 04/08/14 00:00 Date Received: 04/09/14 01:30

Client Sample ID: Trip Blanks

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	175163	04/11/14 13:43	NMD1	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8

10

11

12

14

Certification Summary

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-14
California	State Program	9	1169CA	09-30-14
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-14
Georgia	State Program	4	N/A	03-31-15
Ilinois	NELAP	5	200003	09-30-14
lowa	State Program	7	374	03-01-15
Kansas	NELAP	7	E-10187	01-31-15 *
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
Louisiana	NELAP	6	02031	06-30-14
Maine	State Program	1	NY00044	12-04-14
Maryland	State Program	3	294	03-31-15
Massachusetts	State Program	1	M-NY044	06-30-14
Michigan	State Program	5	9937	04-01-14 *
Minnesota	NELAP	5	036-999-337	12-31-14
New Hampshire	NELAP	1	2337	11-17-14
New Jersey	NELAP	2	NY455	06-30-14
New York	NELAP	2	10026	03-31-15
North Dakota	State Program	8	R-176	03-31-14 *
Oklahoma	State Program	6	9421	08-31-14
Oregon	NELAP	10	NY200003	06-09-14
Pennsylvania	NELAP	3	68-00281	07-31-14
Rhode Island	State Program	1	LAO00328	12-30-14
Tennessee	State Program	4	TN02970	03-31-15
Гехаѕ	NELAP	6	T104704412-11-2	07-31-14
JSDA	Federal		P330-11-00386	11-22-14
√irginia	NELAP	3	460185	09-14-14
Washington	State Program	10	C784	02-10-15
West Virginia DEP	State Program	3	252	05-31-14
Wisconsin	State Program	5	998310390	08-31-14

А

5

7

q

10

13

14

^{*} Expired certification is currently pending renewal and is considered valid.

Method Summary

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Method	Method Description	Protocol	Laboratory
8260B SIM	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
8260C	Volatile Organic Compounds (GC/MS)	MA DEP	TAL BUF

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

1

4

5

6

Q

10

11

13

14

Sample Summary

Client: Innovative Engineering Solutions, Inc

Project/Site: IDS Wayland

TestAmerica Job ID: 480-57495-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-57495-1	DEP-19M-20140405-01	Water	04/05/14 10:30	04/09/14 01:30
480-57495-2	DEP-21-20140405-01	Water	04/05/14 11:25	04/09/14 01:30
480-57495-3	MW-261S-20140408-01	Water	04/08/14 07:20	04/09/14 01:30
480-57495-4	MW-263M-20140408-01	Water	04/08/14 11:45	04/09/14 01:30
480-57495-5	MW-264M-20140408-01	Water	04/08/14 10:30	04/09/14 01:30
480-57495-6	MW-265S-20140408-01	Water	04/08/14 09:25	04/09/14 01:30
480-57495-7	MW-263M-20140408-01	Water	04/08/14 08:45	04/09/14 01:30
480-57495-8	MW-265D-20140408-01	Water	04/08/14 08:15	04/09/14 01:30
480-57495-9	MW-266Ma-20140405-01	Water	04/05/14 14:50	04/09/14 01:30
480-57495-10	MW-266Mb-20140405-01	Water	04/05/14 15:20	04/09/14 01:30
480-57495-11	MW-267S-20140405-01	Water	04/05/14 13:20	04/09/14 01:30
480-57495-12	MW-267M-20140405-01	Water	04/05/14 12:50	04/09/14 01:30
480-57495-13	MW-268S-20140407	Water	04/07/14 08:45	04/09/14 01:30
480-57495-14	MW-268M-20140407	Water	04/07/14 09:25	04/09/14 01:30
480-57495-15	MW-268D-20140405	Water	04/05/14 12:20	04/09/14 01:30
480-57495-16	MW-269Ma-20140405	Water	04/05/14 14:10	04/09/14 01:30
480-57495-17	MW-551-20140408-01	Water	04/08/14 12:05	04/09/14 01:30
480-57495-18	MW-552-20140407-01	Water	04/07/14 15:25	04/09/14 01:30
480-57495-19	MW-553-20140407-01	Water	04/07/14 14:30	04/09/14 01:30
480-57495-20	MW-560-20140407-01	Water	04/07/14 11:10	04/09/14 01:30
480-57495-21	MW-561-20140407-01	Water	04/07/14 12:00	04/09/14 01:30
480-57495-22	MW-562-20140407-01	Water	04/07/14 13:30	04/09/14 01:30
480-57495-23	MW-563-20140407-01	Water	04/07/14 10:20	04/09/14 01:30
480-57495-24	REW-1-20140406-01	Water	04/06/14 13:45	04/09/14 01:30
480-57495-25	REW-4-20140406-01	Water	04/06/14 15:20	04/09/14 01:30
480-57495-26	REW-5-20140406-01	Water	04/06/14 14:30	04/09/14 01:30
480-57495-27	REW-6-20140406-01	Water	04/06/14 09:05	04/09/14 01:30
480-57495-28	REW-7-20140406-01	Water	04/06/14 09:35	04/09/14 01:30
480-57495-29	REW-8-20140406-01	Water	04/06/14 10:45	04/09/14 01:30
480-57495-30	REW-9-20140406-01	Water	04/06/14 11:40	04/09/14 01:30
480-57495-31	REW-10-20140406-01	Water	04/06/14 12:25	04/09/14 01:30
480-57495-32	REW-11-20140406-01	Water	04/06/14 08:15	04/09/14 01:30
480-57495-33	REW-12-20140406-01	Water	04/06/14 13:10	04/09/14 01:30
480-57495-34	DupX1-20140405-01	Water	04/05/14 00:00	04/09/14 01:30
480-57495-35	DupX2-20140406-01	Water	04/06/14 00:00	04/09/14 01:30
480-57495-36	DupX3-20140408-01	Water	04/08/14 00:00	04/09/14 01:30
480-57495-37	Trip Blanks	Water	04/08/14 00:00	04/09/14 01:30

13

4

9

10

12

13

Login Sample Receipt Checklist

Client: Innovative Engineering Solutions, Inc Job Number: 480-57495-1

Login Number: 57495 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wienke, Robert K

Creator. Wienke, Robert K	
Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	True
The cooler's custody seal, if present, is intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Sampling Company provided.	True
Samples received within 48 hours of sampling.	True
Samples requiring field filtration have been filtered in the field.	N/A

3

4

5

7

9

11

12

14

1

Chlorine Residual checked.

N/A

Special Instructions/ Conditions of Receipt 0110 (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Nut - July Date 4. 9-14 L TESTING 生、一生 Date | 18 [[+] Analysis (Attach list if more space is needed) Lab Number Months 831021mg 480-57495 Chain of Custody × × X X ☐ Archive For SOUGE × × 8 NANZ Containers & Preservatives Disposal By Lab -0033 | 5175 HOBN 3. Received By m IOH 3 m M 3 in m 60% Telephone Number (Area Code)/Fax Number CONH 8 POSZH 1300 seudun en Drinking Water? Yes□ ☐ Return To Client Temperature on Receipt Sample Disposal 1105 Site Contact
Site Contact
Dear Survey
Carrier/Waybill Number Matrix pes Project Manager X snoenby × X X X 4|8|14 Date | 4/8 Other_ 1/6 □ Unknown 384X 1450 4) 5 114 1530 4 2 14 1330 USE 14 1350 418/14/07/20 1145 03/3 415 114 1030 41314 1135 Тіте B. □ 21 Days ४।।म 8 114 418111 418114 41514 41814 □ Poison B 1 car soul Larging Solutions Date 03081 7 1 Zip Code X 14 Days (Containers for each sample may be combined on one line) RW Skin Imitant State MW- 21,7 M- 2014-105 -01 ML-317 \$-301404 05 -01 mw-366m-201404 05-01 mu- 312mb- 201404 05-01 10-30HOHOB - 2578-MW Sample I.D. No. and Description 10- 20HOHOHOW -00 mw-2655 -20140408-01 □ 7 Days med - 213m 20400108 - 01 Ma- 264m - 20140408 -01 - mud-2615-20140408 -01 (0-020-19m-20404105-01 | Flammable Walpok Contract/Purchase Order/Quote No. DEP-21- 201404105 Project Name and Location (State) AA-008 Custody Record 25 Spair 48 Hours Possible Hazard Identification Turn Around Time Required I MANDOCKINK 2. Relinquished By 3. Relinquished By Non-Hazard Chain of 24 Hours FAL-4124 (1007) 1. Relingu OFF

Page 126 of 129

4/15/2014

#

15

Special Instructions/ Conditions of Receipt 3 Ste Station limit For (A fee may be assessed if samples are retained Months fonger than 1 month) Chain of Custody Number 261780dio star 50 Page THE LEADER IN ENVIRONMENTAL TESTING 41814 Analysis (Attach list if more space is needed) Lab Number MLZOJES 4 爾 X × X ☐ Archive For 89900 X X X X X X 5175 QC Requirements (Specify) Disposal By Lab Containers & Preservatives HOBN 1. Received By 3. Received By 3 3 IDH n M m M 3 m 50%-66%-0033 Telephone Number (Area Code)/Fax Number EONH Lab Contact Drinking Water? Yes Nox **HSSO**¢ seudun 291 ☐ Poison B ☐ Unknown ☐ Return To Client 4/3/14 1308 X Sample Disposal 1105 Matrix Carrier/Waybill Number 'pes Project Manager × × × × Site Contact 4/8/4 114 Other_ 1090 1345 2420 BOS 1430 -01 41 7 My 1330 2935 -01 417 M 1900 1535 Time -01/1 HI 1/10 ☐ 21 Days -01415 H HI - 17 16-1106JH - B) 417 HY Z -01417厘 4151 出して The States Englished Soldings In AN GENERA Date 0308) -01417 TA Days 4/8/14 0 (Containers for each sample may be combined on one line) 10-| Flammable | Skin Irritant Ø E ☐ 7 Days Sample I.D. No. and Description My-563-20140407 REA-1 - 80146406 7040402 - 2040407 mw- 560 - BOIH BY 07 TOHOPIOG- 545 - WMT MW-3685-30146407 TOHOHOG THE BOHOHOS ms-551-20140408 MW-553- 20140407 MW-561-30140407 MU-368D-BOHOHOS MW - 553 - 80140407 25 Spiles Project Name and Location (State) Contract/Purchase Order/Quote N RA-00% ☐ 48 Hours 100 Cols Turn Around Time Required Non-Hazard 1. Relinquished By 2. Relinquished By 3. Relinquished By 24 Hours TAL-4124 (1007) Client City Page 127 of 129 4/15/2014

TestAmerica

Temperature on Receipt

Custody Record

Chain of

イード

15

Special Instructions/ Conditions of Receipt 4510 (A fee may be assessed if samples are retained Months longer than 1 month) Chain of Custody Number 261784 of 4.9-14 Page 3 THE LEADER IN ENVIRONMENTAL TESTING ノバ 4/8/4 Analysis (Attach list if more space is needed) Lab Number MISCOCO X ☐ Archive For GOICS × X XX × × QC Requirements (Specify) 5175 HOBY Disposal By Lab Containers & Preservatives HOBN seived By 3. Received By (C) (m) (1) 20 IDH 3 on (m) 3 m (3) m 50 Project Manager
Vicki Pound, con
Telephone Number (Area Code)/FaxMumber - 0033 (C) 0 0 0 8 Lab Contact EONH 0 Non POSZH Seudun 000 Drinking Water? Yes□ ☐ Unknown ☐ Return To Client Sample Disposal 508-668 1105 Matrix Carrier/Waybill/Number 'pes X × X X X 4/8/14 3/2 Site Contact 114 Other_ 0815 1310 6 114 1430 14 1045 6 114 1530 1140 1235 2 Time) 1 ☐ 21 Days に正 <u>ال</u> 20 7 1 7 Charles ma □ Poison B TANDATING Enjamente Solchon Inc Date 1 18080) 1 7 7 7 7 7 T 7 A 14 Days (Containers for each sample may be combined on one line) (0-10 100 6 0 ☐ Flammable ☐ Skin Imitant P 0, 0 0--0 5 101 Sample I.D. No. and Description ☐ 7 Days RA-008 Possible Hazard Identification Acw-12- 201404 Olo DONOHOR - 8XOTO 11- 201404 Ole Duoxi- Soly 0405 2500-10- BOILDEL OL 25-3-9-301404106 BED-8-301404 Ole ARD-7- 30140406 Ontract Population Was In REN-1- 20140406 Custody Record REW-5-30140401 RED-4- Jours OF ☐ 48 Hours Turn Around Time Required 3. Relinquished By Non-Hazard 1. Relinquished By 2. Relinquished By 24 Hours FAL-4124 (1007) City

Page 128 of 129

I

TestAmerico

Temperature on Receipt

Chain of

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

4/15/2014

Special Instructions/ Conditions of Receipt 7 6 0570 (A fee may be assessed if samples are retained Months tonger than 1 month) Chain of Custody Number 261782 Imit Son SOXOX Date 4.9.17 Page in 人,任 THE LEADER IN ENVIRONMENTAL TESTING 4/8/14 Analysis (Attach list if more space is needed) Lab Number ☐ Archive For F CUES × 15175 NANZ HOBN Disposal By Lab Containers & Preservatives HOBN 3. Received By X IDH 508 - 668 - 0033 ontact Lab Contact Telephone Number (Area Code)/Fax Number EONH Drinking Water? Yes□ Nox #OSZH seudun ☐ Unknown ☐ Return To Client 1300 DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Sample Disposa Site Contact

| Devel | Code

Carrier/Webbill Number 1105 Matrix pes Project Manager × 418/14 114 Other_ Time ☐ 21 Days Thereacher Ferginerally Shilton His Wholes my □ Poison B (\$0\$) Date State Zip Code Toays St 14 Days (Containers for each sample may be combined on one line) | Flammable | Skin Imitant 400 Sample I.D. No. and Description Taio Blanks RA-008 Contractification of the No. Moderate And Location (State) ☐ 24 Hours ☐ 48 Hours Possible Hazard Identification Turn Around Time Required 3. Relinquished By Comments 1. Relinquished By 2. Relinquished By Non-Hazard TAL-4124 (1007)

Page 129 of 129

TestAmerica

Temperature on Receipt

Custody Record

Chain of